Advanced Course

Distributed Systems

Replicated Logs
and State Machines

Paris Carbone

COURSE TOPICS

» Intro to Distributed Systems

» Basic Abstractions and Failure Detectors

» Reliable and Causal Order Broadcast

» Distributed Shared Memory

» Consensus (Paxos, Raft, etc.)

» Replicated State Machines + Virtual Logs

» Time Abstractions and Interval Clocks (Spanner etc.)

» Consistent Snapshotting (Stream Data Management)
» Distributed ACID Transactions (Cloud DBs) [r—

KTH-2022

MOTIVATION

We wish to implement a Replicated State Machine (RSM).

Processes need to agree on the sequence of commands (or
messages) to execute.

The standard approach is to use multiple instances of Paxos
for single-value consensus (MultiPaxos).

D1p2203

KTH-2022

STATE MACHINES

A State Machine
o Executes a sequence of
commands
o Transforms its state and may clients - request
"”’—--.~,‘\
produce some output)
e Commands are deterministic E){

e i.e., Outputs of the state machine
are solely determined by the
initial state and by the sequence

of commands that it has executed v

KTH-2022

REPLICATED STATE M ACHINES

. A Replicated Log ensures state machines execute same commands in same order.
. Consensus guarantees agreement on command sequence in the replicated log.

« System makes progress as long as any majority of servers are up.

sIsEREEEE
i3

Xx—1 y<—3 x4 |zx x—1 vy<—3 . X—4 | z—Xx x—1 | y—3 . X—4 | z—Xx

D1p2203

Consensus Consensus

\k Consensus

KTH-2022

MULTIPAXOS APPROACH

. Consensus is an agreement on a single value/command

. Let us use multiple Paxos instances. (MultiPaxos)

- Single-value consensus has two events
 Request: Propose(C)
« Indication/Response: Decide(C)

MULTIPAXOS APPROACH

Consensus is agreement on a single value
Let us use multiple instances of Paxos

Organise the algorithm in rounds

MULTIPAXOS APPROACH

Initially all processes P. (servers) are at round 1

. ProCmds := &; Log := (); S, (initial state); proposed := false

. A client q that wants to execute a command C, triggers rb-
broadcast <{C, Pidq>

. upon delivery <(C, Pidq} at p., the command pair is added to ProCmds

unless it is already in Log.

D1p2203

KTH-2022

MULTIPAXOS APPROACH

At round /, each server p;.

Start new instance i of Paxos (single-value)
If ProCmds # @ A not proposed:

Choose a command (C, Pid) in ProCmds
Propose (C, Pid, i) ininstance i; proposed := true
upon Decide(<Cg, Pid’,i):
remove <C,, Pid’ from ProCmds; Append (Cg, Pid’, i) to Log
Execute C,on s, to get (s;, res;) and return res; to Pid’

Proposed .= false;
Move to the next round i+1

KTH-2022

MULTIPAXOS ... CAN BE A MESS

e The algorithms works
e This algorithm is sequential!
e In order to select a command at round i any process (learner) have to
agree on the sequence of commands C, ... C, ,
e Using Paxos every round takes 4 communication steps, 2 for the

prepare phase, and 2 for the accept phase
e Not easy to pipeline proposals
e Same proposal C might end decided in different slots

e Holes in the Log might arise

Sequence Consensus

WHAT IS THE PROBLEM?

« We need to agree on each command

- Handled well by Paxos

« We also need to agree on the sequence of commands

« A mismatch with the consensus specification
- We would like to agree on a growing sequence of commands

DID2203
ks

KTH-2020

CONSENSUS MISMATCH

 Integrity property says that a process can decide at
most one value

 "Cannot change one’s mind”

 But, we don’t want to change what’s been decided before
« Just extend it with more information
o This is allowed by Sequence Consensus

 Can decide again if old decided sequence is a prefix of
the new one

CONSENSUS PROPERTIES

o Validity

 Only proposed values may be decided

e Uniform Agreement

« No two processes decide different values

e Integrity

« Each process can decide at most one value

e Termination

 Every correct process eventually decides a value

DID2203

KTH-2020

SEQUENCE CONSENSUS PROPERTIES

Validity
« If process p decides v then v is a sequence of proposed commands (without
duplicates)

Uniform Agreement

o If process p decides u and process q decides v then one is a prefix of the other

Integrity

« If process p decides u and later decides v then u is a strict prefix of v

Termination (liveness)

« If command C is proposed by a correct process then eventually every correct

process decides a sequence containing C -

Lo KTH-2020

SEQUENCE CONSENSUS

- Event Interface
e propose(C)
- request event to append single command C to the
sequence of decided command

e decide(CS)

« Indication event where CS is a decided command sequence

 Abortable Sequence Consensus adds
* abort

o Indication event

DID2203

KTH-2020

>Ip2203

KTH-2021

Sequence-Paxos

ROADMAP: FROM PAXOS TO SEQUENCE-PAXOS

o Make the minimal modifications to Paxos to obtain correct
Sequence-Paxos algorithm

« Then add optimizations to make the algorithm efficient

« In Paxos each process may assume any or all of the three roles:
proposer, acceptor, and learner

DID2203

KTH-2020

INITIAL STATE FOR PAXOS

« Proposer
> 1= 0 Proposer’s current round number
eV, =1 Proposer’s current value

 Acceptor
Y (I OPromise not to accept in lower rounds
- n,:=0 Round number in which a value is accepted

- v,:= 1 Accepted value

e [Learner
e V=1 Decided value

DID2203

KTH-2020

20

PAXOS ALGORITHM

Proposer
On (Propose, C) :
[y 5 unique higher proposal number
S:=,acks:=0
send (Prepare, n) to all acceptors
On (Promise, n, n’, v’y s.t. n = n,:
add (n’, V) to S (multiset union)
if |S|= [(N+1)/2]:
(k, v) := max(S) // adopt v
Vv, = if v 1 then velse C
send (Accept, n,, vp> to all acceptors
On (Accepted, n) s.t. n = n,:
acks :=acks + 1
if acks =[(N+1)/2]:
send (Decide, v,) to all learners

On (Nack, n)s.t. n=n;
trigger Abort()
n = 0

Acceptor
On (Prepare, n):
o ifng o, <n
° nprom =n
o send (Promise, n, n,, v,) to Proposer

. else: send (Nack, n) to Proposer

On (Accept, n, v):
o if n =n:

TAVAY,

prom =

° Norom -= N

. (g, v,) :==(n, V)

. send (Accepted, n) to Proposer

» else: send (Nack, n) to Proposer
Learner

On (Decide, v):

2 Ifvg= L

2 Vyi=V

Q trigger Decide(v,)

max(S) is any element (k, v) of S s.t. k is highest proposal number

FROM PAXOS TO SEQUENCE-PAXOS

 Values are sequences
« 1 is the empty sequence (L = ())
- We make two changes:

- After adopting a value (seq) with highest proposal
number, the proposer is allowed to extend the
sequence with (nonduplicate) new command(s)

o Learner that receives (Decide, v) will decide v if v is
longer sequence than previously decided sequence

§ veviwscie

¥ och konsT
9999

KTH-2020

22

AGREEING ON (NON-DUPLICATE) COMMANDS

As a client is allowed to issue the same (instance) command C multiple
times we cannot avoid proposing the same command C multiple times

We hide this issue in the sequence append operator @:

Non-duplicate & :
(C4, ..., C,) if Cis equal some C,

© L1 G oG @{ (Cy, ..., C... C), otherwise

Duplication allowed @

+ (Cy..,CheCc¥(,..C,C)

KTH-2020

23

INITIAL STATE FOR SEQUENCE PAXOS

« Proposer
« N, = 0 Proposer’s current round number
e V, =0 Proposer’s current value (empty sequence)

« Acceptor
* Nyom -= OPromise not to accept in lower rounds
- n_:=0 Round number in which a value is accepted

- v, =< Accepted value (empty sequence)

« Learner
« v,:=(Decided value (empty sequence)

DID2203

KTH-2020

24

SEQUENCE PAXOS ALGORITHM

Proposer
On (Propose, C) :
n, := unique higher proposal number
S:=,acks:=0
send (Prepare, n,) to all acceptors
On (Promise, n, n’, v))s.t. n = n:
add (n’, v') to S (multiset union)
if [S|= [(N+1)/2]:
(k, v) := max(S) // adopt v
v, = if v 1 then v else ()
v,:=v ®(C)
send (Accept, n, vp> to all acceptors
On (Accepted, n)s.t.n=n:
acks := acks + 1
if acks = [(N+1)/2]:
send (Decide, v,) to all learners

On (Nack, n)s.t. n=n:
trigger Abort()
n = 0

TAVAY,

Acceptor
On (Prepare, n):
. if n <n:

prom
. Norom -= N
. send (Promise, n, n,, v,) to Proposer

» else: send (Nack, n) to Proposer

On (Accept, n, v):
. ifn, ., <n:

prom =
° Norom == N
. (N, v,) :==(n, V)

send (Accepted, n) to Proposer
else: send (Nack, n) to Proposer

Learner
On (Decide, v):
S P RIVE
Q Vg =V
Q trigger Decide(v,)

KTH-2020

25

SEQUENCE PAXOS ALGORITHM

Proposer

On (Propose, C) :
* n,:=unique higher proposal number
o S:=0J,acks:=0
» send (Prepare, n) to all acceptors
On (Promise, n, n’, v')s.t. n = n,:
e add(n’,Vv)to S (multiset union)
if [S|=[(N+1)/21:

(k, v) := max(S) // adopt v

V=V D (C)

send (Accept, n, v, to all acceptors

Acceptor
On (Prepare, n):
. if Nprom < N:
° nprom =n
. send (Promise, n, n,, v,) to Proposer

« else: send (Nack, n) to Proposer

S ={(ng, vq)s -y (N V)]
fun max(S):
o (nVv)=:(0,0)
. for (n’,V’)in S:
ifn<n or(n=n"and vl < Vl):
(n,v) :=(n",V")
. return (n,v)

KTH-2020

26

WHERE TO GO FROM HERE?

o Correctness ?

« Follow the steps of Lamport

« Correctness in modeled after the single-value Paxos correctness proof

KTH-2020

27

WHERE TO GO FROM HERE?

- Efficiency?
« Every proposal takes two round-trips
« Proposals are not pipelined
« Sequences are sent back and forth

« Decide carries sequences

KTH-2020

28

PREPARE PHASE

Accept phase

Proposer

On (Propose, C):

n, = unique higher proposal number

S:=,acks:=0

send (Prepare, n,) to all acceptors
On (Promise, n, n’, v))s.t. n=n;:

add (n’, v)) to S (multiset union)

if |S|= [(N+1)/2]:

(k, v) := max(S) // adopt v

Vv, = if v= 1 then velse C

Vo=V @ (C)

send (Accept, n, vp) to all acceptors
On (Accepted, n)s.t.n=n:

acks := acks + 1
if acks = [(N+1)/2]:
send (Decide, vp) to all learners

On(Nack, n)s.t.n=n:
trigger Abort()
n = 0

PR

Acceptor
On (Prepare, n):
. if Npom < N
° Norom =N
. send (Promise, n, n,, v,) to Proposer

« else: send (Nack, n) to Proposer

" On (Accept, n, v):

. if Nprom =< N

¢ Norom = N

° (na’ Va) = (n’ V)

. send (Accepted, n) to Proposer

_+» else: send (Nack, n) to Proposer

Learner
On (Decide, v):
0 Il <vl:
Q Vg =V
Q trigger Decide(v,)

max(S) is any element (k, v) of S s.t. k is highest proposal number and v is a sequence

Correctness of Sequence Paxos

30

CORRECTNESS

« How do we know that algorithm is correct?

e Build on proof structure for Paxos

DID2203
ax

KTH-2020

31

PREPARE PHASE

Accept phase

Proposer

On (Propose, C):

n, = unique higher proposal number

S:=,acks:=0

send (Prepare, n,) to all acceptors
On (Promise, n, n’, v))s.t. n=n;:

add (n’, v)) to S (multiset union)

if |S|= [(N+1)/2]:

(k, v) := max(S) // adopt v

Vv, = if v= 1 then velse C

Vo=V @ (C)

send (Accept, n, vp) to all acceptors
On (Accepted, n)s.t.n=n:

acks := acks + 1
if acks = [(N+1)/2]:
send (Decide, vp) to all learners

On(Nack, n)s.t.n=n:
trigger Abort()
n = 0

PR

Acceptor
On (Prepare, n):
. if Npom < N
° Norom =N
. send (Promise, n, n,, v,) to Proposer

« else: send (Nack, n) to Proposer

" On (Accept, n, v):

. if Nprom =< N

¢ Norom = N

° (na’ Va) = (n’ V)

. send (Accepted, n) to Proposer

_+» else: send (Nack, n) to Proposer

Learner
On (Decide, v):
0 Il <vl:
Q Vg =V
Q trigger Decide(v,)

max(S) is any element (k, v) of S s.t. k is highest proposal number and v is a sequence

32

BALLOT (ROUND) ARRAY

Replicas p , p, and p,

m Accepted by p, Accepted by p, Accepted by p,

(C,.Cy) (C2.Cy)

n=2 (C)) (C,)
n=1 (C)
n=0 O 9, 9,

We are looking at the state of acceptors at each p.

Empty sequence accepted in round O

CHOSEN SEQUENCE V

Let v, [p,n] is the sequence accepted by
acceptor p at round n

A sequence v is chosen at round n

if there exists an quorum Q of acceptors
at round n such that v is prefix v_[p,n],

for every acceptor p in Q

A sequence v is chosen
if v is chosen at n, for some round n

n=5 (C,Cs (CyCy)

n=1

n=0

€ (G
(C)
0 0 0

KTH-2020

CHOSEN SEQUENCES

When re quest arrives from m Accepted by p,|Accepted by p,| Accepted by
Ps3

proposer at round 5 the n=5 (C,CsC1) (C,CsCy)
chosen sequences are

<>,
<C,>, n=2 (C,) (Cy)
<C,,C;>, n=1 (C,)

<C,,C,,C> n=0 ¢ () ()

DID2203

KTH-2020

35

PAXOS INVARIANTS

P2c. For any v and n, if a proposal with value v and number n is
issued, then there is a Quorum S of acceptors such that either (a) no
acceptor in S has accepted any proposal numbered less than n, or (b) v
is the value of the highest-numbered proposal among all proposals
numbered less than n accepted by the acceptors in S

=> P2b. If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

=> P2a. If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v

=> P2. If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v

KTH-2020

36

SEQUENCE PAXOS INVARIANTS

P2c. if a proposal with

and number n is issued, then there is a

quorum S of acceptors such that
the highest-numbered proposal less than n accepted by any acceptor in S

(C,,C3,b,d)
(C,,Cs.a)
(C,,Cy)

(Cy)
0

<C2’C3’b’d>

(Cy)

0

(C5,Cy)
(Cy)

0

of

Highest numbered proposal
accepted before round 4 is
<c2,c3>

It is ok to issue <c2,c3,a> at
4 or<c2,c3,b,d>at5

37

PREPARE PHASE

Accept phase

Proposer

On (Propose, C):

n, = unique higher proposal number

S:=,acks:=0

send (Prepare, n,) to all acceptors
On (Promise, n, n’, v))s.t. n=n;:

add (n’, v)) to S (multiset union)

if |S|= [(N+1)/2]:

(k, v) := max(S) // adopt v

Vv, = if v= 1 then velse C

Vo=V @ (C)

send (Accept, n, vp) to all acceptors
On (Accepted, n)s.t.n=n:

acks := acks + 1
if acks = [(N+1)/2]:
send (Decide, vp) to all learners

On(Nack, n)s.t.n=n:
trigger Abort()
n = 0

PR

Acceptor
On (Prepare, n):
. if Npom < N
° Norom =N
. send (Promise, n, n,, v,) to Proposer

« else: send (Nack, n) to Proposer

" On (Accept, n, v):

. if Nprom =< N

¢ Norom = N

° (na’ Va) = (n’ V)

. send (Accepted, n) to Proposer

_+» else: send (Nack, n) to Proposer

Learner
On (Decide, v):
0 Il <vl:
Q Vg =V
Q trigger Decide(v,)

max(S) is any element (k, v) of S s.t. k is highest proposal number and v is a sequence

38

IF A SEQUENCE IS CHOSEN

Replicas p , p, and p,

m Accepted by p, Accepted by p, Accepted by p,

(C2.Cy) (C2.Cy)

n=2 <C2> <CZ>
n=1 (Cy)
n=0 v 0 9

[f sequence v is issued in round n then v is an
extension of all sequences chosen in rounds < n

DID2203

KTH-2020

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2b. If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

\ g

P2b. If a proposal with seq v is chosen, then
every higher-numbered proposal issued by
any proposer has v as a prefix

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

\ g

P2a. If a proposal with seq v is chosen, then
every higher-numbered proposal accepted by
any acceptor has v as a prefix

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is
chosen has value v

e

P2. If a proposal with seq v is chosen, then
every higher-numbered proposal that is
chosen has v as a prefix

42

MULTI-PAXOS INVARIANTS

Initially, the empty sequence is chosen in round n = 0

P2c. If a proposal with seq v and number n is issued, then there is a set S
consisting of a majority of acceptors such that seq v is an extension of the
sequence of the highest-numbered proposal less than n accepted by the
acceptors in S

=> P2b. If a proposal with seq v is chosen, then every higher-numbered
proposal issued by any proposer has v as a prefix

=> P2a. If a proposal with seq v is chosen, then every higher-numbered
proposal accepted by any acceptor has v as a prefix

=> P2. If a proposal with seq v is chosen, then every higher-numbered
proposal that is chosen has v as a prefix

DID2203

KTH-2020

Discussion

PROBLEMS WITH EXISTING ALGORITHM?

45

WE CAN DO BETTER

- Safety properties are guaranteed but...

1. A proposer can run only one proposal until it decides before taking
the next proposal (no pipelining).

Multiple Proposers? -> Livelock (flp ghost)
2 round-trips for each sequence chosen

too much IO (whole sequences are sent back and forth)

G s B e

the sequences kept in proposers, acceptors, deciders are mostly
redudant.

dip2203

KTH-2022

Does the previous algorithm satisfy Liveness?

dip2203

KTH-2022

Name desirable properties of a leader election algorithm

dip2203

When should a leader election algorithm take these transitions?

(followel]—b[candidate fj%)

