
ID2203

KTH-2022

Distributed Systems
Advanced Course

Paris Carbone

Basic Abstractions

KTH-2022

ID2203

A SYSTEM’S ROADMAP

2

I- Specification

The ‘WHAT’

• Assumptions
• Goals
• Set of Properties

II- Solution Design

The ‘HOW’

• Satisfies Properties
• Abstract yet Accurate

Representation

III- Implementation

• Execution
• Development

Let’s take a closer look into
…one of the biggest systems of all time

The Death Star

KTH-2022

ID2203

DEATH STAR ROADMAP

4

• Gargantuan Scale/Storage
• Indestructible
• Ultra High-Speed (>light)
• Massive Power Projection

I- Specification

• Moon-Size Model
• Stainless Steel Plates
• Hyperdrive, Thermal Reactors
• Superlaser Module Design

II- Solution Design III- Implementation

KTH-2022

ID2203

THE ISSUE

6

• Gargantuan Scale/Storage
• Indestructible
• Ultra High-Speed (>light)
• Massive Power Projection

I- Specification

• Moon-Size Model
• Stainless Steel Plates
• Hyperdrive, Thermal Reactors
• Superlaser Module Design

II- Model (Blueprint)

shoot here to
detonate

KTH-2022

ID2203

WE COULD HAVE SAVED DEATH STAR

• As with every type of reliable system
1. A correct, careful specification of its properties is crucial.
2. A solution design (algorithm) needs to:

1. Provably satisfy all properties and
2. Not violating any property (duh).

Let’s see how this can be done with some core abstractions!

7

KTH-2022

ID2203

COURSE TOPICS

8

‣ Intro to Distributed Systems
‣ Basic Abstractions and Failure Detectors
‣ Reliable and Causal Order Broadcast
‣ Distributed Shared Memory
‣ Consensus (Paxos, Raft, etc.)
‣ Dynamic Reconfiguration
‣ Time Abstractions and Interval Clocks (Spanner etc.)
‣ Consistent Snapshotting (Stream Data Management)
‣ Distributed ACID Transactions (Cloud DBs)

KTH-2022

ID2203

NEED OF DISTRIBUTED ABSTRACTIONS

• The basic building blocks of any distributed system is a
set of distributed algorithms.

• Implemented as a middleware between network (OS)
and the application.

9

Reliable applications need underlying services
stronger than network protocols (e.g. TCP, UDP)

KTH-2022

ID2203

ANATOMY OF A DISTRIBUTED SYSTEM

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

Processes,
Threads

ANATOMY OF A DISTRIBUTED SYSTEM

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

Execution
Model

ANATOMY OF A DISTRIBUTED SYSTEM

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic CommitReliable
Messaging

 (> OS)

ANATOMY OF A DISTRIBUTED SYSTEM

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit Discover
actual

dead processes

ANATOMY OF A DISTRIBUTED SYSTEM

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

Either
everyone receives

msg or none

ANATOMY OF A DISTRIBUTED SYSTEM

KTH-2022

ID2203

Middleware

OS

Distributed
Applications

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

ANATOMY OF A DISTRIBUTED SYSTEMEither
everyone commits

or aborts

KTH-2022

ID2203

ANATOMY OF A DISTRIBUTED SYSTEM

Network

Processes

ID2203

KTH-2022

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

Event-Based Component Model

The Event-based
Component Model

KTH-2022

ID2203

DISTRIBUTED COMPUTING MODEL

• Set of processes and a network (communication links)
• Each process runs a local algorithm (program)
• Each process makes computation steps

• The network makes computation steps
• to store a message sent by a process
• to deliver a message to a process

• Message delivery triggers a computation step at the receiving process

19

Network

Process

Environment

KTH-2022

ID2203

THE DISTRIBUTED COMPUTING MODEL

• Computation step at a process
• 1. Receives a message (external, input)
• 2. Performs local computation
• 3. Sends one or more messages to some other processes

(external, output)

• Communication step:
• Depends on the network abstraction
• Receives a message from a process, or
• Delivers a message to a process

20

1.

2.

3.

Process

Network Environment

KTH-2022

ID2203

INSIDE A PROCESS
• A process consists of a set of components (automata)
• Components are concurrent and access local state.
• Each component receives messages through an input FIFO buffer
• Sends messages to other components

• Events: messages between components in the same process
• Events are handled by procedures (actions) called Event Handlers

21

KTH-2022

ID2203

EVENTS VS MESSAGES

22

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

Network
 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commitevents net

messages

KTH-2022

ID2203

EVENT-BASED PROGRAMMING

• Process executes program
• Each program consists of a set of modules or

component specifications

• At runtime these are deployed as components

• The components in general form a software stack

23

KTH-2022

ID2203

EVENT-BASED PROGRAMMING

Process executes program
Components interact via events (with attributes):
Handled by Event Handlers

on event <coi Event1, attr1, attr2,...> do
 // local computation
 trigger <coj Event2, attr3, attr4,...>

24

KTH-2022

ID2203

EVENT-BASED PROGRAMMING

• Events can be almost anything
• Messages (most of the time)
• Timers (internal event)
• Conditions (e.g. x==5 & y<9)

• Two types of events
• Requests (input)
• Indications (output)

25

KTH-2022

ID2203

COMPONENTS IN A PROCESS

Stack of components in a single process

Applications

Algorithms

Channels

commit_component

database_component

reliable_bcast_comp consensus

perfect_link_comp

request

request

request

request

indication

indication indication

indication

Local events
delivered in FIFO

order

26

KTH-2022

ID2203

CHANNELS AS MODULES

Channels represented by modules (too)
Request event:

Send to destination some message (with data)

Indication event:
Deliver from source some message (with data)

trigger <send | dest, [data1, data2, …] >

upon event <deliver | src, [data1,data2, …]> do

27

KTH-2022

ID2203

EXAMPLE

Application uses a Broadcast component
which uses channel component to broadcast

Applications

Channels

bcast

app

channel

<sendBcast|m>

bcast

app

channel

app

channel

bcast

app

<send|p2,m> <send|p3,m>

Algorithms

<delBcast|p1,m> <delBcast|p1,m>

<deliver|p1,m> <deliver|p1,m>

p1 p2 p3

28

ID2203

KTH-2022

Specifications

KTH-2022

ID2203

SPECIFICATION OF A SERVICE

How to specify a distributed service (abstract)?
1. Interface (aka Contract, API)

Requests
Responses

2. Correctness Properties
Safety
Liveness

3. Underlying Model
Assumptions on failures
Assumptions on timing (amount of synchrony)

Implementation
Composed of other services
Adheres to interface and satisfies correctness
Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”

30

KTH-2022

ID2203

SIMPLE EXAMPLE: JOB HANDLER

Module:
Name: JobHandler, instance jh

Events:
Request: 〈jh, Submit | job〉 : Requests a job to
be processed
Indication: 〈jh, Confirm | job〉 : Confirms that
the given job has been (or will be) processed

Properties:
Guaranteed response: Every submitted job is
eventually confirmed

31

how to use

conditions

KTH-2022

ID2203

SOLUTION EXAMPLE

Synchronous Job Handler
Implements:

JobHandler, instance jh
upon event 〈jh, Submit | job〉 do

process(job)
trigger 〈jh, Confirm | job〉

32

KTH-2022

ID2203

ANOTHER SOLUTION: ASYNCHRONOUS JOB HANDLER

Implements:
JobHandler, instance jh

upon event 〈jh, Init〉 do
buffer := ∅

upon event 〈jh, Submit | job〉 do
buffer := buffer ∪ {job}
trigger 〈jh, Confirm | job〉

upon buffer ≠ ∅ do
job := selectjob (buffer)
process(job)
buffer := buffer \ {job}

〈..Init〉 automatically
generated upon component

creation

33

KTH-2022

ID2203

COMPONENT COMPOSITION

34

JobHandler
(jh)

TransformationHandler
(th)

⟨th submit …⟩

⟨jh submit …⟩ ⟨jh Confirm …⟩

⟨th Confirm …⟩
⟨th Error⟩

ID2203

KTH-2022

Safety and Liveness Properties

KTH-2022

ID2203

SPECIFICATION OF A SERVICE

How to specify a distributed service (abstract)?
Interface (aka Contract, API)

Requests
Responses

Correctness Properties
Safety
Liveness

Model
Assumptions on failures
Assumptions on timing (amount of synchrony)

Implementation
Composed of other services
Adheres to interface and satisfies correctness
Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”

36

KTH-2022

ID2203

CORRECTNESS

Always expressed in terms of Safety and Liveness
Safety

Properties that state that nothing bad ever
happens

Liveness
Properties that state that something good
eventually happens

37

KTH-2022

ID2203

CORRECTNESS EXAMPLE

• Correctness of You in ID2203

Safety
You should never fail the exam

 (marking exams costs money)

Liveness
You should eventually take the exam

 (university gets money when you pass)

38

KTH-2022

ID2203

CORRECTNESS EXAMPLE (2)

• Correctness of traffic lights at intersection

Safety
Only one direction should have a
green light

Liveness
Every direction should eventually
get a green light

39

KTH-2022

ID2203

EXECUTION AND TRACES

An execution fragment of A is sequence of alternating
states and events

s0, ε1, s1, ε2, …, sr, εr, ...
(sk, εk+1, sk+1) transition of A for k≥0

An execution is execution fragment where s0 is an initial
state
A trace of an execution E, trace(E)

The subsequence of E consisting of all external events
ε1, ε2, …, εr, ...

40

KTH-2022

ID2203

SAFETY & LIVENESS ALL THAT MATTERS

A trace property P is a function that takes a
trace and returns true/false

i.e. P is a predicate

Any trace property can be expressed as the
conjunction of a safety property and a
liveness property”

41

KTH-2022

ID2203

SAFETY FORMALLY DEFINED

The prefix of a trace T is the first k (for k ≥ 0)
events of T

I.e. cut off the tail of T
I.e. finite beginning of T

An extension of a prefix P is any trace that has P as
a prefix

42

KTH-2022

ID2203

SAFETY DEFINED

Informally, property P is a safety property if
Every trace T violating P has a bad event, s.t.
every execution starting like T and behaving like
T up to the bad event (including), will violate P
regardless of what it does afterwards

43

KTH-2022

ID2203

SAFETY DEFINED

Formally, a property P is a safety property if
Given any execution E such that P(trace(E)) = false,
There exists a prefix of E, s.t. every extension of that
prefix gives an execution F s.t. P(trace(F))=false

44

KTH-2022

ID2203

SAFETY EXAMPLE

Point-to-point message communication
Safety P: “At most once delivery”

A message sent is delivered at most once

45

KTH-2022

ID2203

SAFETY EXAMPLE

Point-to-point message communication
Safety P: “At most once delivery”

A message sent is delivered at most once

Take an execution where a message is delivered
more than once

• Cut-off the tail after the second delivery
• Any continuation (extension) will give an execution which

also violates the required property

46

KTH-2022

ID2203

LIVENESS FORMALLY DEFINED

• A property P is a liveness property if
Given any prefix F of an execution E,
there exists an extension of trace(F) for
which P is true

“As long as there is life there is hope”

47

KTH-2022

ID2203

LIVENESS EXAMPLE

Point-to-point message communication
Liveness P: “At least once delivery”

A message sent is delivered at least once

Take the prefix of any execution
• If prefix contains delivery, any extension satisfies P
• If prefix doesn’t contain the delivery, extend it so that it

contains a delivery, the prefix + extended part will satisfy P

48

KTH-2022

ID2203

MORE ON SAFETY

Safety can only be
satisfied in infinite time (you’re never safe)
violated in finite time (when the bad happens)

Often involves the word “never”, “at most”, “cannot”,…

Sometimes called “partial correctness”

49

KTH-2022

ID2203

MORE ON LIVENESS

Liveness can only be
satisfied in finite time (when the good happens)
violated in infinite time (there’s always hope)

Often involves the words eventually, or must
Eventually means at some (often unknown)
point in “future”

Liveness is often just “termination”

50

KTH-2022

ID2203

FORMAL DEFINITIONS VISUALLY

• Safety can always be violated (false) in finite time

• Safety is violated for an execution E if there exists
a prefix such that all extensions are false

• Liveness can always be made true in finite time

• Liveness is satisfied (true) for an execution E if for
all prefixes there exists an extension that is true

∃ prefix
false

∀ extensions

∀ prefixes
true

∃ extension

Trace T

Execution E

51

KTH-2022

ID2203

PONDERING SAFETY AND LIVENESS

Is really every property either liveness or safety?
Every message should be delivered exactly 1 time [d]

Every message is delivered at most once and
Every message is delivered at least once

52

ID2203

KTH-2022

Process Failure Model

KTH-2022

ID2203

SPECIFICATION OF A SERVICE

How to specify a distributed service (abstract)?
Interface (aka Contract, API)

Requests
Responses

Correctness Properties
Safety
Liveness

Model
Assumptions on failures
Assumptions on timing (amount of synchrony)

Implementation
Composed of other services
Adheres to interface and satisfies correctness
Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”

54

KTH-2022

ID2203

MODEL/ASSUMPTIONS

Specification needs to specify the distributed
computing model
• Assumptions needed for the algorithm to be correct

Model includes assumptions on
• Failure behavior of processes & channels
• Timing behavior of processes & channel

55

KTH-2022

ID2203

PROCESS FAILURES

Processes may fail in four ways:
• Crash-stop
• Omissions
• Crash-recovery
• Byzantine/Arbitrary

• Processes that don’t fail in an execution are correct

56

KTH-2022

ID2203

CRASH-STOP FAILURES

• Crash-stop failure
• Process stops taking steps

• Not sending messages
• Nor receiving messages

• Default failure model is crash-stop
• Hence, do not recover
• But processes are not allowed to recover? [d]

57

KTH-2022

ID2203

OMISSION FAILURES

• Process omits sending or receiving messages
•Some differentiate between

•Send omission
•Not sending messages the process has to send according

to its algorithm
•Receive omission

•Not receiving messages that have been sent to the process
•For us, omission failure covers both types

58

KTH-2022

ID2203

CRASH-RECOVERY FAILURES

The process might crash
It stops taking steps, not receiving and sending messages

It may recover after crashing
Special <Recovery> event automatically generated
Restarting in some initial recovery state

Has access to stable storage
May read/write (expensive) to permanent storage device
Storage survives crashes
E.g., save state to storage, crash, recover, read saved state

59

KTH-2022

ID2203

CRASH-RECOVERY FAILURES

•Failure is different in crash-recovery model
• A process is faulty in an execution if

• It crashes and never recovers, or
• It crashes and recovers infinitely often (unstable)

• Hence, a correct process may crash and recover
• As long as it is a finite number of times

60

KTH-2022

ID2203

BYZANTINE FAILURES

•Byzantine/Arbitrary failures
• A process may behave arbitrarily

• Sending messages not specified by its algorithm
• Updating its state as not specified by its

algorithm

• May behave maliciously, attacking the system
• Several malicious processes might collude

61

ID2203

KTH-2022

Fault-tolerance Hierarchy

KTH-2022

ID2203

FAULT-TOLERANCE HIERARCHY

• Is there a hierarchy among the failure types
• Which one is a special case of which? [d]
• An algorithm that works correctly under a general

form of failure, works correctly under a special form
of failure

• Crash special case of Omission
• Omission restricted to omitting everything after a

certain event

63

KTH-2022

ID2203

FAULT-TOLERANCE HIERARCHY

• In Crash-recovery
• Under assumption that processes use stable storage as

their main memory

• Crash-recovery is identical to omission
• Crashing, recovering, and reading last state from storage
• Just same as omitting send/receiving while being

crashed

64

KTH-2022

ID2203

FAULT-TOLERANCE HIERARCHY

• In crash-recovery it is possible to use volatile memory
• Then recovered nodes might not be able to restore all of state
• Thus crash-recovery extends omission with amnesia

• Omission is special case of Crash-recovery
• Crash-recovery , not allowing for amnesia

65

KTH-2022

ID2203

FAULT-TOLERANCE HIERARCHY

Crash-recovery special case of Byzantine
Since Byzantine allows anything

Byzantine tolerance → crash-recovery tolerance
Crash-recovery → omission, omission → crash-stop

66

Byzantine Crash-recovery Omission Crash

ID2203

KTH-2022

Channel Behavior (failures)

KTH-2022

ID2203

SPECIFICATION OF A SERVICE

How to specify a distributed service (abstract)?
Interface (aka Contract, API)

Requests
Responses

Correctness Properties
Safety
Liveness

Model
Assumptions on failures
Assumptions on timing (amount of synchrony)

Implementation
Composed of other services
Adheres to interface and satisfies correctness
Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”

68

KTH-2022

ID2203

CHANNEL FAILURE MODES

• Fair-Loss Links
• Channels delivers any message sent with

non-zero probability (no network partitions)
• Stubborn Links

• Channels delivers any message sent
infinitely many times

• Perfect Links
• Channels that delivers any message sent

exactly once

69

KTH-2022

ID2203

CHANNEL FAILURE MODES

• Logged Perfect Links
• Channels delivers any message into a

receiver’s persistent store (message log)

• Authenticated Perfect Links
• Channels delivers any message m sent

from process p to process q, that
guarantees the m is actually sent from p
to q

70

ID2203

KTH-2022

Fair Loss Links

KTH-2022

ID2203

CHANNEL FAILURE MODES

Fair-Loss Links
Channels delivers any message sent
with non-zero probability (no network
partitions)

72

KTH-2022

ID2203

FAIR LOSS LINKS (FLL)

73

pi pj

〈fll Send | pj, m〉 〈fll Deliver | pi, m〉

fll

KTH-2022

ID2203

FAIR-LOSS LINKS: INTERFACES

Module:
Name: FairLossPointToPointLink instance fll

Events:
Request: 〈fll, Send | dest, m〉

Request transmission of message m to process dest
Indication:〈fll, Deliver | src, m〉

Deliver message m sent by process src

Properties:
FL1, FL2, FL3.

74

KTH-2022

ID2203

FAIR-LOSS LINKS

Properties
FL1. Fair-loss: If m is sent infinitely often by pi to
pj, and neither crash, then m is delivered infinitely
often by pj
FL2. Finite duplication: If a m is sent a finite
number of times by pi to pj, then it is delivered at
most a finite number of times by pj

I.e. a message cannot be duplicated infinitely many times
FL3. No creation: No message is delivered
unless it was sent

75

ID2203

KTH-2022

Stubborn Links

KTH-2022

ID2203

CHANNEL FAILURE MODES

Stubborn Links
Channels delivers any message sent
infinitely many times

77

KTH-2022

ID2203

STUBBORN LINKS: INTERFACE

Module:
Name: StubbornPointToPointLink instance sl

Events:
Request: 〈sl, Send | dest, m〉

Request the transmission of message m to process dest
Indication:〈sl, Deliver src, m〉

deliver message m sent by process src
Properties:

SL1, SL2

78

KTH-2022

ID2203

STUBBORN LINKS

• Properties
• SL1. Stubborn delivery: if a correct process pi

sends a message m to a correct process pj, then
pj delivers m an infinite number of times

• SL2. No creation: if a message m is delivered
by some process pj, then m was previously sent
by some process pi

79

KTH-2022

ID2203

IMPLEMENTING STUBBORN LINKS

• Implementation
• Use the Lossy (fair-loss) link
• Sender stores every message it sends in sent
• It periodically resends all messages in sent

80

KTH-2022

ID2203

ALGORITHM (SL)
Implements: StubbornLinks instance sl
Uses: FairLossLinks, instance fll
• upon event 〈sl, Init〉 do

 sent := ∅
 startTimer(TimeDelay)

• upon event 〈Timeout〉 do
forall (dest, m) ∈ sent do

 trigger 〈fl, Send | dest, m〉
startTimer(TimeDelay)

81

• upon event 〈sl, Send | dest, m〉 do
trigger 〈fll, Send | src, m〉
sent := sent ∪ { (dest, m) }

• upon event 〈fll, Deliver | src, m〉 do
 trigger 〈sl Deliver | src, m〉

KTH-2022

ID2203

IMPLEMENTING STUBBORN LINKS

•Implementation
•Use the Lossy link
•Sender stores every message it sends in sent
•It periodically resends all messages in sent

• Correctness
• SL1. Stubborn delivery

• If process doesn’t crash, it will send every message infinitely many
times. Messages will be delivered infinitely many times. Lossy link may
only drop a (large) fraction.

• SL2. No creation
• Guaranteed by the Lossy link

82

ID2203

KTH-2022

Perfect Links

KTH-2022

ID2203

CHANNEL FAILURE MODES

• Perfect Links

• Channels that delivers any message
sent exactly once

84

KTH-2022

ID2203

PERFECT LINKS: INTERFACE

• Module:
• Name: PerfectPointToPointLink, instance pl

• Events:
• Request: 〈pl, Send | dest, m〉

• Request the transmission of message m to node dest
• Indication: 〈pl, Deliver | src, m〉

• deliver message m sent by node src
• Properties:

• PL1, PL2, PL3

85

KTH-2022

ID2203

PERFECT LINKS (RELIABLE LINKS)

Properties
• PL1. Reliable Delivery: If pi and pj are

correct, then every message sent by pi
to pj is eventually delivered by pj

• PL2. No duplication: Every message
is delivered at most once

• PL3. No creation: No message is
delivered unless it was sent

86

KTH-2022

ID2203

PERFECT LINKS (RELIABLE LINKS)

Which one is safety/liveness/neither
PL1. Reliable Delivery: If neither pi nor pj crashes,
then every message sent by pi to pj is eventually
delivered by pj

PL2. No duplication: Every message is delivered at
most once

PL3. No creation: No message is delivered unless it
was sent

(liveness)

(safety)

(safety)

87

KTH-2022

ID2203

PERFECT LINK IMPLEMENTATION

• Implementation
• Use Stubborn links
• Receiver keeps a log of all received messages in Delivered

• Only deliver (perfect link Deliver) messages that weren’t delivered before
• Correctness

• PL1. Reliable Delivery
• Guaranteed by Stubborn link. In fact the Stubborn link will deliver it

infinite number of times
• PL2. No duplication

• Guaranteed by our log mechanism
• PL3. No creation

• Guaranteed by Stubborn link (and its lossy link? [D])

88

KTH-2022

ID2203

FIFO PERFECT LINKS (RELIABLE LINKS)

Properties

PL1. Reliable Delivery:
PL2. No duplication:
PL3. No creation: No message is
delivered unless it was sent
FFPL. Ordered Delivery: if m1 is sent
before m2 by pi to pj and m2 is delivered
by pj then m1 is delivered by pj before m2

89

KTH-2022

ID2203

INTERNET TCP VS. FIFO PERFECT LINKS

• TCP provides reliable delivery of packets
• TCP reliability is so called “session based”
• Uses sequence numbers

• ACK: “I have received everything up to byte X”
• Implementing Perfect Link abstraction on TCP

requires reconciling messages between the sender
and receiver when reestablishing connection after a
session break

90

KTH-2022

ID2203

DEFAULT ASSUMPTIONS IN COURSE

• We assume perfect links (aka reliable) most of time in the course (unless
specified otherwise)

• Roughly, reliable links ensure messages exchanged between correct
processes are delivered exactly once

• Messages are uniquely identified and
• the message identifier includes the sender’s identifier
• i.e. if “same” message sent twice, it’s considered as two different

messages

• Many algorithm for crash-recovery process model assume either a
Stubborn link, or Logged perfect link

91

ID2203

KTH-2022

Timing Assumptions

KTH-2022

ID2203

SPECIFICATION OF A SERVICE

How to specify a distributed service (abstract)?
Interface (aka Contract, API)

Requests
Responses

Correctness Properties
Safety
Liveness

Model
Assumptions on failures
Assumptions on timing (amount of synchrony)

Implementation
Composed of other services
Adheres to interface and satisfies correctness
Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
93

KTH-2022

ID2203

TIMING ASSUMPTIONS

• Timing assumptions
• Processes

• bounds on time to make a computation step
• Network

• Bounds on time to transmit a message between a
sender and a receiver

• Clocks:
• Lower and upper bounds on clock rate-drift and

clock skew w.r.t. real time

94

KTH-2022

ID2203

RECAP - MODELS

• Synchronous (systems build on solid timed operations + clocks)

• Partially Synchronous (eventually every execution will exhibit

period of synchrony - to make progress - satisfy liveness)

• Asynchronous (?)

95

ID2203

KTH-2022

Asynchronous Model and Causality

KTH-2022

ID2203

ASYNCHRONOUS SYSTEMS

• No timing assumption on processes and channels
• Processing time varies arbitrarily
• No bound on transmission time
• Clocks of different processes are not synchronized

• Reasoning in this model is based on which events
may cause other events

• Causality

• Total order of event not observable locally, no
access to global clocks

97

KTH-2022

ID2203

CAUSAL ORDER (HAPPEN BEFORE)

• The relation ➝β on the events of an execution (or trace β),
called also causal order, is defined as follows
• If a occurs before b on the same process, then a ➝β b
• If a is a send(m) and b deliver(m), then a ➝β b
• a ➝β b is transitive

• i.e. If a➝β b and b ➝β c then a ➝β c

• Two events, a and b, are concurrent if not a ➝β b and not b ➝β a
• a||b

98

KTH-2022

ID2203

CAUSAL ORDER (HAPPEN BEFORE)

99

e1 e2
p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3

KTH-2022

ID2203

EXAMPLE OF CAUSALLY RELATED EVENTS

Time-space diagram

100

p1

p2

p3

time

Causally Related Events

Concurrent Events Causally Related Events

KTH-2022

ID2203

SIMILARITY OF EXECUTIONS

• The view of pi in E, denoted E|pi, is
• the subsequence of execution E restricted to

events and state of pi
• Two executions E and F are similar w.r.t pi if

• E|pi = F|pi
• Two executions E and F are similar if

• E and F are similar w.r.t every process

101

KTH-2022

ID2203

EQUIVALENCE OF EXECUTIONS

• Computation Theorem:
• Let E be an execution (c0,e1,c1,e2,c2,…), and V the

trace of events (e1,e2,e3,…)
• Let P be a permutation of V, preserving causal order

• P=(f1, f2, f3…) preserves the causal order of V when for
every pair of events fi ➝V fj implies fi is before fj in P

• Then E is similar to the execution starting in c0

with trace P

102

KTH-2022

ID2203

EQUIVALENCE OF EXECUTIONS

• If two executions F and E have the same collection of events,
and their causal order is preserved, F and E are said to be
similar executions, written F~E

• F and E could have different permutation of events as
long as causality is preserved!

103

KTH-2022

ID2203

COMPUTATIONS

• Similar executions form equivalence classes where every execution in a class
is similar to the other executions in the same class

• I.e. the following always holds for executions:
• ~ is reflexive

• I.e. a~ a for any execution
• ~ is symmetric

• I.e. If a~b then b~a for any executions a and b
• ~ is transitive

• If a~b and b~c, then a~c, for any executions a, b, c

• Equivalence classes are called computations of executions
104

KTH-2022

ID2203

EXAMPLE OF SIMILAR EXECUTIONS

p1
p2
p3

time

p1
p2
p3

time

p1
p2
p3

time

Same color ~ Causally related

All three executions are part
of the same computation, as
causality is preserved

105

KTH-2022

ID2203

TWO IMPORTANT RESULTS (1)

Computation theorem gives two important
results

Result 1: There is no algorithm in the
asynchronous system model that can observe
the order of the sequence of events (that can
“see” the time-space diagram, or the trace) for
all executions

106

KTH-2022

ID2203

TWO IMPORTANT RESULTS (1)

Proof:
• Assume such an algorithm exists. Assume p knows

the order in the final (repeated) configuration
• Take two distinct similar executions of algorithm

preserving causality
• Computation theorem says their final repeated

configurations are the same, then the algorithm
cannot have observed the actual order of events as
they differ

107

KTH-2022

ID2203

TWO IMPORTANT RESULTS (2)

Result 2: The computation theorem does not hold if the model is

extended such that each process can read a local hardware clock

Proof:
• Similarly, assume a distributed algorithm in which each

process reads the local clock each time a local event occurs
• The final (repeated) configuration of different causality

preserving executions will have different clock values, which
would contradict the computation theorem

108

