Advanced Course Distributed Systems

Course Introduction

Paris Carbone

Teachers

Paris

Carbone

(examiner)

PEOPLE

Alumni - Hall of Fame

Harald

Ng

Sonia

Horchidan

Max

Meldrum

Lars Kroll

Tallat Shafaat

Seif Haridi

(previous teacher)

KEY APPLICATIONS

Distributed Data Systems

Edge Computing

Cloud Computing

Data Management

WAY OF THINKING

VS

COURSE TOPICS

Intro to Distributed Systems **Basic Abstractions and Failure Detectors** Reliable and Causal Order Broadcast Distributed Shared Memory Consensus (Paxos, Raft, etc.) Dynamic Reconfiguration Consistent Snapshotting (Stream Data Management) Distributed ACID Transactions (Cloud DBs)

- Time Abstractions and Interval Clocks (Spanner etc.) Advanced Systems

Basic Components

COURSE CONTENT

Canvas - https://canvas.kth.se/courses/31583

- Zoom & Video Lectures
- Textbook & Algorithms
- Quizzes
- Labs & Tutorials
- Course Forum (Piazza)
- Assignments & Project
- Final Exam

1. Live (Zoom) Lectures

- Presentation and Live Discussions
- Recorded Video Uploads in Canvas
- 2. Video Series by Seif Haridi
 - Covers most content

LECTURES

• Optimal for self-paced study in the beginning of the course

Reliable and Secure Distributed Programming

Second Edition

Cachin, Guerraoui, Rodrigues

- Main textbook of the course
- Covers most of the content presented
- Complements lectures but doesn't replace them
- E-book available at KTH Library & Canvas

TEXTBOOK

- "Reliable and Secure Distributed Programming"

"Distributed Algorithms" by Nancy Lynch

- Recommended Reading
- Covers Input-Output Automata

1. Non-Graded

- Complement each lecture • Crucial for assessing understanding
- 2. Graded
 - Graded after each module
 - 13P of the final grade

• piazza.com/kth.se/winter2022/id2203/home

- Questions & Discussions
- Anonymous posting
- All registered students will be automatically added
- Notify us if you cannot access it

PIAZZA FORUM

- Live Zoom Sessions with TAs / Guests
- Recorded Uploads in Canvas
- **Topics**
 - Distributed Programming Frameworks (Kompics)
 - Model Checkers (TLA+)
 - Refreshers for Math/Proof Systems
 - Exercise & Project Q&A
 - Guest lectures on specific system areas

LABS & TUTORIALS

ASSIGNMENTS & PROJECT

- 1. Programming Exercises 7P
 - Algorithm Implementations
 - Kompics (Scala) environment

- 2. Project **30P** + **10P** (Bonus)
 - Individual no group projects
 - Intermediate reports might be peer reviewed
 - 15P requirement to pass

• Up to 50P

- Similar style as the graded quizzes
- Tests knowledge of course topics with emphasis in reasoning Multiple Choice & Explanation/Proof Questions
- Pass: 25/50P for A-F course graded part

FINAL EXAM

GRADING SCHEME

Graded Quizzes (max 13P) + Programming Exercises (max 7P) + Project (max 40P) + Exam (max 50P) $= \max 110P$ where 90+ A, 80+ B, 70+ C, 60+ D, 50+ E, <50 F

For the 4.5 credit A-F graded part the grade is calculated as follows:

