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Rankine Cycle 

1-2 Isentropic compression in a pump 

2-3 Isobaric heat addition in a boiler 

3-4 Isentropic expansion in a turbine 

4-1 Isobaric heat rejection 

W out 

2 

3 

4 1 
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History – Significant milestones 

1850     Clausius-Rankine develops pratical process  

1883     First reaction turbine by deLaval 

1884     First multi-stage reaction turbine by Parsons 

1888     First impulse turbine by deLaval and first power station to                
 produce electricity with a turbine (Parsons) 

1894     The counter rotating Ljungstrom turbine (STAL) 

1903     Turbine theory and calculation methods by Stodola and the        
 Mollier diagram 

1920+   30 MW units with 20bar/325 degC eff<0.18 

1934     First four flow LPT on a single shaft eff=0.275 

1937     Steam turbines with 120 bar/500degC eff=0.36 

1964     First combined cycle 

1965     250 MW units with reheat eff=0.45  

              First supercritical unit with double reheat eff=0.48 

1970+   500-900 MW coal fired units and 1400 MW nuclear 

1988+   Combined cycle starts gaining popularity 
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De Laval´s patent for impulse turbine from 1889 
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Today: Challenges 

Dominant worldwide! 

 

Intermittent renewables 

 

Chase the best turbine  

efficiencies! 

 

Effective combined cycle  

power plants 

 

Highest efficiencies with  

district heating   

 

Turbines for  

concentrating solar power 

 Gemasolar CSP plant 
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What are the main parts of a steam turbine? 

extractions Final stages 

Exhaust  

Blades/guide vanes 

axis 

bearings 

casing 

Inlet (valves) support 
rotor 

isolation 

seals 
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Main Function of these parts? 

extractions 

Final stages 

Exhaust  

Blades/guide vanes 

axis 

bearings 

casing 

Inlet (valves) support 
rotor 

isolation 

Extract steam 

Extract energy from steam 

Release steam  

Extract energy from steam 

Transfer momentum 

Support rotor 

Contain steam 

Admit steam Support casing Support blades 

Transfer momentum 

Keep heat 

seals 
Isolate steam 
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Steam Expansion 

Rotor 

Casing 

Blade rows  

 

Steam Turbine – Overview 

[1] siemens.com 

Casing 

Rotor 

IN 

OUT 

• Extract the thermal energy from steam,  

• Shaft work  drive a generator. 

 

        T↓, P ↓, 𝒗 ↑ 

Casing 

Rotor 

Seals 
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Today’s Lecture: 

1. Blading 

2. Control stages 

3. Final stages 

4. Seal technology 

5. Inlets 

6. Casings 

7. Flexibility 

 

What are major design objectives? 
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Today’s Lecture: 

1. Blading           efficiency, integrity, costs 

2. Control stages          efficiency, part load 

3. Final stages                      efficiency, integrity 

4. Seal technology          performance, integrity 

5. Inlets           low losses, costs 

6. Casings           thickness, tightness, costs 

7. Flexibility                           fast response, lifetime 

 

What are major design objectives? 
performance, reliability,  

flexibility, costs 
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1. BLADING 

• Main function: Extract steam energy 

• High temperature and pressure at the inlet  

• Take that energy into shaft work 

Think of a hydro turbine ! 

 

• Main principles of a steam turbine 

• Rotation 

• Deviation of the flow 

 

• Blades deviate the flow 

• Impulse (low reaction) 

• Reaction 
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1. BLADING 

Stator 

Rotor 

Stator 

Rotor 

Impulse 

Stage 

Reaction 

Stage 

Blade 
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Rankine Cycle 

1 

2 

3 

4 

Entropy 

Temperature 

Condenser 

Steam generator 

Turbine 

Pump 

2a 

3a 

Expansion line 
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Expansion Process 

h 

Wilson line 

isothermals 

= 

isobars 

isothermals 
isobars 

s 

Mollier Diagram 

Entropy S 

E
n

th
a

lp
y
 h

 

Guide vane 1 

Rotor 1 

Expansion line 
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Velocity triangles 

Stator row 

Rotor row 
Rotation  

UWC ii



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Reaction  

”Traupel” 

Stageh

Rotorh
R

is

is






Stagep

Rotorp
R




~
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• Conservation Principles 

• Mass 

• Momentum 

• Energy 

 

𝑤 = ∆ℎ = 𝑢 × ∆𝑐𝜃 

Euler’s turbine equation 

w specific work    [J/kg] [W/(kg/s)] 

h enthalpy    [J/kg] 

u rotor blade velocity    [m/s] 

cθ absolute swirl velocity  [m/s]  
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Smith diagram 

Stage loading coefficient: 

2

0

u

h


u

cm

Flow coefficient: 

U: rotor velocity 

Cm: axial flow velocity Size 

Flow 

Number  

of stages 

Aero.  

loading 

Eff, R 
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Velocity number 

 
 kgJh

smu

is / dropenthalpy  isentropic

/ velocitybladerotor 





 efficiency stage

opt


2


ish

u


η =
∆ℎ0
∆ℎ𝑖𝑠

 



MONIKA TOPEL 07-11-2017 20 

BLADING – rotor speed 

• High specific rotor 

speed enables use 

of long blades for 

improved efficiency 

• Small tip leakage 

area due to small 

rotor diameter 

SST700 HP turbine 

U1= r1 x w1 

Traditional turbine 

U1= U2 
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1. BLADING 

Nearly no reaction 

Small or no pressure drop over the rotor 

High work output/stage (less stages) 

Diaphragm design 

Less leakage losses 

More axial length/stage 

Impulse blading 

Disc rotor 
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1. BLADING 

Drum rotor 

Reaction about 0.5 

Pressure drop over rotor requires 

balance piston 

Less work output /stage (more stages) 

Better aerodynamics due to less turning 

Reaction blading 
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1. BLADING 

 

Design aspects: 

 

• Aerodynamics 

• Integrity 

• Roots 

• Shroud Seals 

• Manufacturing and assembly 
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Profile losses 

Mach Number in a rotor blading - transonic  

Friction losses 

 

Trailing edge losses 

  

Shock losses 

 

Separation losses 

 velocitysound

velocity
Ma 
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Secondary flow 
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1. BLADING 

Where are the challenges? 

Pressure ratio : 2000 

Volume ratio:  700 

 

5 MW/stage 14 MW/stage 
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1. BLADING 

Large centrifugal loads (static tension)  LP 

Bending/torsion loads     LP 

Large thermal loads (LCF, creep)   HP, IP 

Unsteady steam loads (HCF)   HP, IP, LP 

Stress concentration in notches   HP, IP, LP 

Corrosion       LP 

Erosion by particles     LP 

Oxidation      IP, LP  



MONIKA TOPEL 07-11-2017 28 

1. BLADING 

Reduce thermodynamic losses! 

•Profile losses 

•Secondary losses 

•Leakage losses 

•Axial gap losses 

•Moisture losses 

•Exhaust losses 

•Unnecessary losses 
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1. BLADING – typical blade data 

HP LP 

Bladelength l [mm] 34 866 

Length/Chord L/C [-] 1.1 4.9 

Diameter ratio Dy/Di [-] 1.2 2.2 

Blade velocity u m/s 150 450 

Reynoldsnumber Re [-
]*105 

40 4 

Machumber Ma [-] 0.2 1.3 
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2. CONTROL STAGE 

Partial admission 

to control load 

 

Several admission valves 

 

Require zero reaction stage 

 

High dynamic loads 

HP/turbine with control stage Partial admission nozzle box 
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2. CONTROL STAGE 

Partial admission 

to control load 

 

Several admission valves 

 

Require zero reaction stage 

 

High dynamic loads 

HP/turbine with control stage Partial admission nozzle box 
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Diaphragms principle design 

Leakages! 
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3. FINAL STAGES 

Where are the challenges? 
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3. FINAL STAGES – limits 

”On the design limits of steam turbine stages” 

Gyarmathi, Schlachter, 1988 Tip radius/hub radius 

A
re

a
 

Rotor stress 

Erosion 

Cascade geometry 

Blade frequency 



MONIKA TOPEL 07-11-2017 35 

3. FINAL STAGES – Exhaust losses 

Exhaust Losses 3600 RPM 
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Profile losses 

Sonic velocity 
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3. FINAL STAGES - roots 



MONIKA TOPEL 07-11-2017 37 

3. FINAL STAGES – example root stress analysis  
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3. FINAL STAGES – blade vibration 
F

re
q
u
e

n
c
y
 (

H
z
) 

Speed (rpm) 

Campbell diagram 
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3. FINAL STAGES – moisture 

Collection and release 

of moisture from vane 

trailing edge 
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3. FINAL STAGES – Erosion damage on blades 

Cut through leading edge  
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3. FINAL STAGES – low load limits 
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4. SEALS  Seal designs 
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4. SEALS  Operation 
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4. SEALS Theory 

Fanno curve 

At clearance  high speed 

At cavity  dissipated +  

                   pressure decrease 



MONIKA TOPEL 07-11-2017 45 

4. SEALS 

Abradable seals spring loaded 

segment 

sealing strips 

in the rotor 

abradable 

layer 
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4. SEALS Brush seal 
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Seals comparison 

[Turbocare, Power Gen 2005] 
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5. INLETS 

Main function: admit steam 
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Inlet pressure losses 

Figure of volute and flow 
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Volute Assembly 

One 114 MW reheat unit in combined cycle. 

Inlet 148 bara/ 2150 psia, 565°C/1050°F,  

with reheat to 565°C/1050°F. 

Order spring 1999. 

Three 112.7 MW units in combined cycle  

with W501F gas turbines. Inlet data 

per unit 112.7 MW at 145 bar(a)/ 2103 psia and 

561.3°C/1004 °F. 

Order 1998. 

 
One 95 MW reheat unit in combined cycle  

with a GE 7FA gas turbine.  

Inlet 129 bar(a)/ 1871psia and 568°C/ 1054°F 

Order March 2000. 
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6. CASINGS 

Main function: contain steam 

Tightness 

Mass 

Thermal flexibility 
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6. CASINGS 

Main function: contain steam 

Important parameters  

-Tightness 

- Mass 

- Thermal flexibility 
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6. CASINGS 

Large pressure loads 

High temperatures (creep 

and LCF) 

 

Welded designs and casted 

designs 

 

Modular design to adapt to 

applications necessary 
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7. FLEXIBILITY 

Steam turbines have been available since the 19th century and 

nowadays are the dominant technology in electricity production. 
 

Electricity Market Changes 
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The Start-up Process 

1) Initial Conditions 

• Overnight standstill 

• Pressure kept in drum overnight 

• Turbine in turning gear and sealed 

2) Boiler Start-up 

• Recirculation to build pressure (mass flow) 

• Steam conditions rising 

• Allowed ramp rates [
𝐾

min
] = 𝑓(𝑃) 

3) Preheating 

• Main header to turbine 

• Bypass to condenser 

4) Valve Opening 

• Steam matching turbine requirements 

• Pressure, Temperature, Desired superheat 

5) Steam Turbine Start-up 

• Temperature rates controlled  

6) Sync+Load 

• Rolling 

• Loading 

 



MONIKA TOPEL 07-11-2017 56 

• Thermal stress 

• Thick-walled components 

• LCF Life 

• Allowed ∆T to last 40 yrs 

• Schedules/curves 

 

 

• Differential expansion 

• Clearances (Leakage) 

• Rubbing 

• Monitoring 

 

Steam Turbine Start-up Operation 

[1] siemens.com 

• Steam temperature(t) 

• Tsteam – Tmetal 

 

 

 

 

 

 

 

 

∆𝑙 
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Thermal Stress and Life - Materials 

𝜎 =
𝐸𝛽𝑚∆𝑇 

1 − 𝜈
 

∆𝑇 = 𝑇𝑠  −  𝑇𝑚 = 𝑇𝑠  −  
2

𝑅2
  𝑟𝑇(𝑟)𝑑𝑟 
𝑅

0

 

 

Loading 

Turbine Life [yrs] 

Low Cycle Fatigue 

S-N Curve 𝒇(𝑻) 

∆𝝈𝑨𝑳𝑳𝑶𝑾= ∆𝑻𝑨𝑳𝑳𝑶𝑾 

Start curve 

𝑇𝑚𝑒𝑡𝑎𝑙 

∆
𝑇

 

A 

B 

C 

A 

B 

C 

Less/more life? 

Notch factors! 

Utilization Max HS more life! 
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Thermal Stress and Life - Transient 

*Gülen ”Gas Turbine CC Fast Start: The physics behind the concept” 
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Differential Expansion and Clearances 

∆𝑙 = 𝛽𝑚𝑙𝑖 ∙ 𝑇 − 𝑇𝑖  

 

∆𝑙𝑟𝑒𝑙= ∆𝑙𝑟𝑜𝑡 − ∆𝑙𝑐𝑎𝑠 

 

∆𝑙𝑟𝑒𝑙 Loading 

Nominal Point 

Long/Short Rotor 

Tolerances 

Clearances 
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Examples 

Typical Turbine Layouts 
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SST900-FN-34A-CE357 

Typical Industrial turbine 



MONIKA TOPEL 07-11-2017 62 

SST900-SV-2-C500 

Typical CC single cycle 

 casing fixpoint 

(600mm in to 

condenser) 

Flexible supports (no 

sliding elements) 

 rotor fixpoint 

(thrust bearing) 

Center key 

(sliding) 

Minimised 

clearances in HP-

part 

No majort 

sliding elements 

(maintenance) 

Cost effective 

High access for 

maintenance  

Compact 

Cost effective 
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SST900-FV-2-C620 

Typical IP for CC Reheat 
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SST900-FN-25B-BE(down) 

Backpressure unit with 

controlled extraction 
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Siemens SST 700 HP-turbine – barrel design 
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Dual flow high pressure steam turbine 
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High pressure steam turbine, drum rotor 
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Steam turbine with controlled extractions 

Front Section Middle 

Section 

Rear Section 

Process  

steam 

Exhaust 

steam 

Inlet  

steam 
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High pressure reaction steam turbine with control 
stage 
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Reaction steam turbine  
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Low pressure impulse steam turbine from LMZ 
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High and intermediate pressure steam turbine 
with impulse blading 
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Typical nuclear power steam turbine trains 

Half speed rotor 

Full speed rotor   



End of Presentation 

Steam Turbine Technology 
THANK YOU! 


