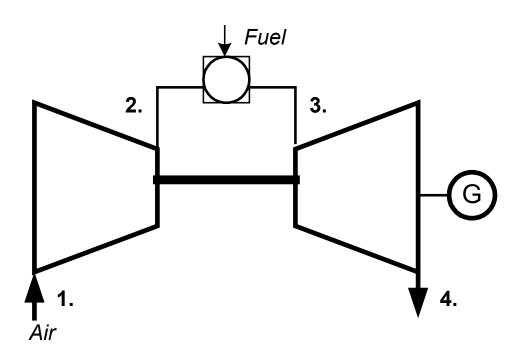
SPG course MJ2405


Exercise 2: Simple Gas Turbine Cycle

Calculate the electrical efficiency of the simple open-cycle, single-shaft gas turbine consisting of a compressor, combustor, and expander.

Given Data:

Fuel \rightarrow Light Fuel Oil (LFO)
Ambient conditions
Compressor pressure ratio, $\pi_{\rm C}$ Inlet temperature turbine
Isentropic efficiency, compressor
Isentropic efficiency, turbine
Pressure loss, combustor
Generator efficiency
Mechanical efficiency

LHV_{LFO} = 42.3 MJ/kg p_1 = 1 bar ; T_1 = 20°C π_C = p_2/p_1 = 10 t_3 = 1000°C η_{SK} = 0.83 η_{ST} = 0.88 2% η_G = 0.98 η_m = 0.98

We can solve the turbine for 1 kg/s air mass flow, using the specific fuel consumption parameter $\beta = m_{fuel} / m_{air}$

See the applicable equations in the help file and the entire solution guide in CANVAS!