
Free energy calculations
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Why do free energy calculations?

The free energy G gives the population of states:

P1

P2
= exp

(

∆G

kBT

)

, ∆G = G2 −G1

Since we mostly simulate in the NPT ensemble we will use the
Gibbs free energy G (not the NVT Helmholtz free energy A)

A free energy difference can be split into two terms:

∆G = ∆H − T∆S , ∆H = ∆U + P∆V

∆G is less costly to calculate than ∆U



Example: solvation free energy

Measuring the probabilities by cal-
culating distributions directly can be
very inefficient:

• path between two states
infrequently sampled
• barrier high
• narrow connection

• probability of the two states can
differ very much (large free en-
ergy difference)



Example: solvation free energy

focus on the transition process



The coupling parameter approach

We add a coupling parameter λ to the Hamiltonian or potential:

V = V (r, λ)

V (r, 0) = V A(r) , V (r, 1) = V B(r)

The free energy difference between state A and B is then given by:

GB(p, T )−GA(p, T ) =

∫ 1

0

〈

∂H

∂λ

〉

NPT ;λ

dλ



Free energy perturbation

At a given value of λ:

A(λ) = −kBT log

[

c

∫

e−βV (r,λ)dr

]

Usually impossible to calculate from simulations.
But possible to calculate as a perturbation from an ensemble average:

A(λ+∆λ)−A(λ) = −kBT log

∫

exp[−βV (r, λ+∆λ)]dr
∫

exp[−βV (r, λ)]dr

= −kBT log
〈

e−β[V (r,λ+∆λ)−V (r,λ)]
〉

λ



Free energy integration

At a given value of λ:

A(λ) = −kBT log

[

c

∫

e−βV (r,λ)dr

]

Usually impossible to calculate from simulations.
Also possible to compute dA/dλ from an ensemble average:

dA

dλ
=

∫

∂V
∂λ exp[−βV (r, λ)]dr
∫

exp[−βV (r, λ)]dr
=

〈

∂V

∂λ

〉

λ

Averages are taken over an equilibrium path using V (λ)

Usually intermediate points are used.
About 5-20 points required to integrate ∂V/∂λ properly



Slow growth

Integrate
〈

∂V

∂λ

〉

λ

while changing λ at every MD step

Issue: no ensemble average is taken: hysteresis is likely

Only use this for a simple, rough initial estimate,
use free energy integration for quantitative results



Free energy of solvation

solute solvent solvated solute

∆G of solvation is often used to parametrize force fields

Partitioning properties:
similarly one can determine the free energy of transfer from a polar
(water) to an apolar solvent (octane, cyclohexane)

This is important for protein folding and peptide-membrane
interactions



Partitioning free-energies

water
protein

water

water

membrane



Binding free energies
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Distributions
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∆G between similar states

When the states of interest are very similar, e.g. small changes in
charge or LJ parameters, only the potential energy difference
matters and one can do single step perturbation

In Gromacs this can be done in two ways:

• Run a simulation for state A
• Do mdrun -rerun traj.trr with B-state parameters
• Determine the potential energy difference

or

• Run a simulation for state A with also a B-state topology and
get the potential energy difference from the free energy code



∆G between different states

With frequent transitions between states and small ∆G:

• simulate the system
• count the populations

With infrequent transitions between states or large ∆G:

We can modify the Hamiltonian to gradually move the system from
state A to state B

The free energy difference is then given by the total work associated

with changing the Hamiltonian



The coupling parameter approach

The λ dependence of V (rmλ) can be chosen freely, as long as the
end points match the states

The simplest approach is linear interpolation:

V (r, λ) = (1− λ)V A(r) + λV B(r)

This works fine, except when potentials with singularities are affected

(LJ, Coulomb)



The coupling parameter approach

solute solvent solvated solute

State A: solute fully coupled to the solvent
State B: solute fully decoupled from the solvent

An example approach:
Run simulations at: λ = 0, 0.1, . . . , 0.9, 1.0



Soft-core interactions

Instead of linear interpolation we use:

Vsc(r) = (1− λ)V A(rA) + λV B(rB)

rA =
(

ασ6
Aλ

p + r6
)

1
6 , rB =

(

ασ6
B(1− λ)p + r6

)
1
6
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Solvation free energy in practice

Make a topology where:
• the B-state atom types of the solute have LJ parameters zero
• the B-state charges of the solute are zero

1) Simulate the system with solvent at several λ-values 0,...,1

2) Simulate the system in vacuum at several λ-values 0,...,1

The solvation free energy is given by:

∆Gsolv =

∫ 1

0

〈

∂H

∂λ

〉

2)

dλ−

∫ 1

0

〈

∂H

∂λ

〉

1)

dλ



Turning off non-bonded interactions

In many cases it is more efficient to also turn off all non-bonded
intramolecular interactions

(separate calculation of the intramolecular contribution required)



Solvation of ethanol in water

0 0.2 0.4 0.6 0.8 1
λ

0

200

400

600

<
dH

/d
λ>

 (
kJ

/m
ol

)

in H2O, p=1, α=0.6
in H2O, p=2, α=1.5
vacuum, p=1, α=0.6



Free energy topology

; Include forcefield parameters

#include "ffoplsaa.itp"

[ moleculetype ]

; Name nrexcl

methanol 3

[ atoms ]

;nr type resnr res atom cgnr charge mass typeB chargeB massB

1 opls_080 1 MET CH3 1 0.266 15.035 opls_068 0 15.035

2 opls_078 1 MET O 1 -0.674 15.9994 opls_071 0 14.027

3 opls_079 1 MET H 1 0.408 1.008 opls_068 0 15.035

[ bonds ]

; ai aj funct dA kA dB kB

1 2 1

2 3 1

[ angles ]

; ai aj ak funct thetaA kA thetaB kB

1 2 3 1



Potential of mean force

A potential of mean force (PMF) is the free energy along one or
more degrees of freedom

The name comes from a common way to derive a PMF:
by integrating the mean force working on a certain degree of
freedom

One can also obtain a potential of mean force by Boltzmann
inverting a pair correlation function g(r):

PMF (r) = −kBT log(g(r)) + C



Entropic effects

r

The phase-space volume available to the system is: 4πr2

Thus the entropic distribution is:

T∆S = kBT log(4π r2) = 2kBT log(r) + C

This result can also be obtained by integrating the centrifugal force

Fc(r) =
2kBT

r



PMF with a coupling parameter

Since constraints are part of the Hamiltonian, they can also be
coupled with lambda

d( λ )

The mean force is given by: −
〈

∂H

∂λ

〉

With this approach one can one make PMF for distances between
atoms, not between centers of mass



PMF with the pull code

With a constraint: PMF between whole molecules

With a spring (umbrella sampling): PMF between anything
The mean force is the mean force working on the spring

Confusingly there are similar option AFM and umbrella



The pull code for membranes

B
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The pull code in practice

The pull code is controlled by extra input files for mdrun

An index file to define the groups

An .ppa file for the pull parameters:
Constraint pulling: constraint length, pull rate
“Spring” pulling: distance, pull rate, force constant

Output: pull.pdo with the pull forces



Reversibility

?



Reversibility check

The forward and backward path should give the same answer

So one can check:

∆G making molecule dissappear
=

-∆G make molecule appear

or

∆G pulling molecule out of a protein
=

-∆G pushing molecule into a protein



Free energy from non-equilibrium processes

If you change the Hamiltonian too fast, the ensemble will “lag
behind” the change in the Hamiltonian: work partly irreversible
Total work W done on the system exceeds the reversible part ∆A:

W ≥ ∆A

In 1997 Jarzynski published the relation between the work and free
energy difference for an irreversible process from λ=0 to 1:

A1 − A0 = −kBT log
〈

e−βW
〉

λ=0

averaged over ensemble of initial points for λ = 0

Remarkable as W is very much process dependent



All methods up till now

Jarzynski’s relation:

A1 − A0 = −kBT log
〈

e−βW
〉

λ=0

Free energy perturbation is Jarzynski in one step

Free energy integration is the slow limit of Jarzynski’s equation

Slow growth is incorrect, as it should use Jarzynski’s relation

Jarzynski’s relation often not of practical use, as exponential
averaging is inconvenient; only works well for σ(W ) < 2 kBT



Free energy integration error

For highly curved ∂V/∂λ, as is often the
case, the discretized integral will give a
systematic error

Solution:
use Bennett acceptance ratio method

Instead of ∂V/∂λ, calculate:
〈V (λi+1)− V (λi)〉λi

and
〈V (λi+1)− V (λi)〉λi+1

and from that determine A(λi+1)− A(λi)
using a maximum likelyhood estimate

This is the method of choice
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Other non-equilibrium methods

Crooks method using many transitions between λ=0 and λ=1 from

two (or more) equilibrium simulations at λ=0 and λ=1



Reading

Daan & Frenkel Part III.7

exercise will come



Estimating errors



Block averaging

Estimating error is important for any quantitative analysis

A simple method that can always be applied
is to split your data into m blocks and estimate the error by
assuming the blocks are independent

Say we have n data points: x(i∆t), i = 0, . . . , n− 1

We can estimate the error of the average from m block averages Bj :

E =

√

√

√

√

1

m(m− 1)

m−1
∑

j=0

(Bj − 〈B〉)2

Bj =
1

ℓ

(j+1)ℓ−1
∑

i=j ℓ

x(i∆t) , ℓ =
n

m



Block averaging

But the blocks will always be correlated

We can assume a double exponential correlation,
fast decay correlation time τ1, slow decay τ2:

〈x(0)x(t)〉 = ae−t/τ1 + (1− a)e−t/τ2

E2(t) = σ2 2

n∆t

{

a τ1

[

(e−t/τ1 − 1)
τ1
t

]

+ (1− a)τ2

[

(e−t/τ2 − 1)
τ2
t

]}

The error estimate for the average is then given by:

lim
t−>∞

E(t) = σ

√

2

n∆t
{a τ1 + (1− a)τ2}

This analysis can be done with g analyze -ee



Error estimate example
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