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What is coarse graining?

For this talk I will define coarse graining as reducing the number of
interactions for calculating the “potential”

Examples:
• Electronic density model −→ classical force field
• Explicit solvent −→ implicit solvent
• All-atom model −→ united-atom model
• Atomistic model −→ “chemical moiety model”



Why use coarse graining?

Example:

from 100000 atoms, 100 parameters

to 1000 particles, 10 parameters

Advantages:
• speeds up simulations
• easier to understand the physics
• possibly less over-fittinf

Disadvantages:
• accurate force fields still required (and often not available)
• dynamics becomes inaccurate (faster, but how much?)



Reducing the number of degrees of freedom

Reducing the number of interactions usually goes together
with reducing the number of degrees of freedom.

But one can reduce the number of degrees of freedom without
reducing the number of interactions.

Example: torsional dynamics with an all atom model

Only reducing the number of degrees of freedom:

• Monte Carlo: smaller conformational space ⇒ faster search
• Molecular Dynamics: more constraints ⇒ slower



Why coarse grain?

Reasons for using a coarse grained model (vs. atomistic):
• For the system size I am interested in I can not reach the

required time scale
• I am not interested in a specific chemical system,

but in generic properties
• Simplified analysis of results

Speed-up of coarse graining:
• Cheaper potential calculation (factor 1-1000)
• Larger time step (factor 1-10)
• Smoother free energy landscape (artifact) (factor 1-1000)



Exact coarse graining

Given a potential V and a state point NpT :

ρ(R) = exp

(

−
V (R)

kBT

)

We want to split the system in “interesting” coordinates Ra and
“non-interesting” coordinates Rb:

ρa(Ra) =

∫

Rb,(NpT )

ρ(R) =

∫

Rb,(NpT )

exp

(

−
V (R)

kBT

)

Ra can be any set of coordinates:
• coordinates of atoms
• centers of mass of molecules / groups of atoms
• distances between atoms
• . . .



Exact coarse graining

We can convert ρa to a free energy Wa:

Wa,NpT (Ra) = −kBT log ρa(Ra)

= −kBT log

∫

Rb,(NpT )

exp

(

−
V (R)

kBT

)

= Va(Ra)− kBT log

∫

Rb,(NpT )

exp

(

−
V (R)− Va(Ra)

kBT

)



Range of validity

Coarse grained “potential” (really free energy) W :

Wa,NpT (Ra) = −kBT log

∫

Rb,(NpT )

exp

(

−
V (R)

kBT

)

Strictly speaking Wa,NpT can only be used at N = N0, p = p0, T = T0

Composition: e.g. N0 = {Na = 100, Nb = 1000}:
Wa,NpT only valid for Na/Nb = 1/10

Pressure / volume
Because Wa,NpT is not a potential

virial “pressure” ̸= thermodynamic pressure

simulate at volume V0 = ⟨V ⟩NpT



Dynamics

Removing degrees of freedom also removes their friction and noise
contributions.

Leaving out friction and noise will speed up the dynamics

Friction and noise can have complex time and space correlations,
which are related through the dissipation-fluctuation theorem.

Some friction and noise can be put back in using for instance
stochastic dynamics (Langevin dynamics)

Stochastic dynamics (in Gromacs) has no time or space correlation.



n-body expansion

Without loss of generality we can expand W in n-body terms:

Wa,NpT (Ra) =
∑

i<j

W2(rij)

+
∑

i<j<k

W3(rij , rik, rjk)

+
∑

i<j<k<l

W4(rij , rik, ril, rjk, rjl, rkl)

+ . . .

summing over all a-particles



Pair potential approximations

Infinite dilution approximation:

Wa,NpT (Ra) ≈
∑

i<j

W2(rij)

+
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+ . . .

Effective pair potential:

Wa,NpT (Ra) =

∑

i<j W2(rij)

+
∑

i<j<k W3(rij , rik, rjk)

+
∑

i<j<k<l W4(rij , rik, ril, rjk, rjl, rkl)

. . .

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≈
∑

i<j

Wp(rij)



Obtaining infinite dilution potentials

The infinite dilution “potential” is a potential of mean force (PMF).

A PMF is the free energy along one degree of freedom, averaging
over all other degrees of freedom.

The mean force between two molecules can be determined by
constraining the distance between the two molecules in an MD
simulation and monitoring the constraint force.

r PMF(r) =
∫ r

∞

⟨Fconstraint⟩s d s



PMF: an entropy correction

The PMF as described contains the kinetic entropy term of two
masses rotating at fixed distance.
For a constraint in a d-dimensional system this term is:

G(r) = −kBT log(rd−1) = −(d− 1) kBT log(r)

The entropic force pushing the two molecules apart is:

F (r) = −
dG
dr = (d− 1) kBT

1

r



Defining effective pair potential

• Use an analytical form
example: Martini
example: in Mainz: WCA potential (LJ cut at minimum)

• Require all pair correlations to match the reference:
unique solution for the effective pair potentials

Matching all pair correlations:
advantange: all pairs correlations correct
disadvantage: what happens to higher order correlations?



Effec. pair pot.: iterative Boltzmann inversion

• Simulate the detailed system
• Determine the RDF gref (r) between the coarse-grained centers

First guess for the effective potential W :

W 0(r) = −kBT log(gref (r))

Determine the RDF: g0(r)

Iteration:

W i(r) = W i−1(r) + kBT log

(

gi−1(r)

gref (r)

)

Determine the RDF: gi(r)

Converged when gi(r) is “close enough” to gref (r)



Effective pair potential: inverse Monte Carlo

Sometimes inverse Boltzmann has convergence problems,
especially for multi component systems

Example: three component system, components a and b and solvent
three target RDF’s: gaa(r), gbb(r),gab(r)
three effective pair potentials: Waa(r),Wbb(r),Wab(r)
All six are interlinked



Effective pair potential: inverse Monte Carlo

Sometimes inverse Boltzmann has convergence problems,
especially for multi component systems

Example: three component system, components a and b and solvent
three target RDF’s: gaa(r), gbb(r),gab(r)
three effective pair potentials: Waa(r),Wbb(r),Wab(r)
All six are interlinked

A stable, efficient method: inverse Monte Carlo

• divide all gref (r) and W (r) in spatial bins
• determine all correlations between all bins in gref

• do Monte Carlo (or MD) with the current guess for the potentials
• adjust the W??(r) bin values taking into account the correlations

Lyubartsev and Laaksonen, Phys. Rev. E 52, 3730 (1995)



Systematic coarse-graining of polymers

Non-bonded interactions:
iterative Boltzmann inversion
for a liquid

Bonded interactions:
direct Boltzmann inversion

Possible issues:
• (de)coupling of bonded

interactions
• what is bonded and

what is non-bonded
along the chain?

polystyrene



Effective pair potential: liquid benzene

one bead: one benzene molecule
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Effective pair potential: SPC/E water

one bead: one water molecule
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Strong multi-body effects squeezed into a pair potential:
• Bad higher order structure
• extreme virial pressures: 9000 bar



Example: ions in implicit solvent

Ions in explicit water −→ ions in implicit water

Capturing the multi-body effects in a single parameter



Calculating PMF’s between ions

The mean force between two ions can be determined by
constraining the distance between the two ions in an MD simulation
and monitoring the constraint force.

r PMF(r) =
∫ r

∞

⟨Fconstraint⟩s d s



Calculating PMF’s between ions

The mean force between two ions can be determined by
constraining the distance between the two ions in an MD simulation
and monitoring the constraint force.

r PMF(r) =
∫ r

∞

⟨Fconstraint⟩s d s

• 1 ion pair, 1000 SPC/E water molecules (SPC/E: ϵ = 72)
• periodic unit cell, NPT ensemble, PME electrostatics
• GROMACS simulation package



Na+-Cl− solvent-averaged interaction
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Na+-Cl− solvent separated pair



Na+-Cl− solvent-averaged interaction
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Eq. charged solvent-averaged interaction
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Solute dependent dielectric permittivity

The solute or concentration
dependent dielectric permit-
tivity ϵE is given by the
dipole fluctuation of the sol-
vent only

Levesque et al. JCP 72, 1887 (1980)
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Solute dependent dielectric permittivity

The solute or concentration
dependent dielectric permit-
tivity ϵE is given by the
dipole fluctuation of the sol-
vent only

Levesque et al. JCP 72, 1887 (1980)

0.1 0.5 1.0 2.0 2.8
concentration (M)

40

60

80

ε E

NaCl + SPC/E

εE=72/(1+0.28c)

Vc(r, c) = PMF (r) +
q1 q2
4πϵ0

(

1

ϵE(c)
−

1

ϵE(0)

)

1

r

Hess et al. PRL 96, 147801 (2006)



Implicit solvent results

ne(r) = ρ 4π

∫ r

0

[g(s)− 1] s2 d s
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Excess coordination (up to 0.8 nm)

ne(r) = ρ 4π

∫ r

0

[g(s)− 1] s2 d s
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Direct comparison with experiment

When using
implicit solvent:

φ =
P

Pideal
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Gromacs user tabulated functions

You can use any functional shape for bonded and non-bonded
interaction though user tables.

The tables in Gromacs use cubic spline interpolation,
this gives continous and consistent potential and forces

For splines you need to specify V and F = −dV/dr
at each table point

Table files are simply ascii files which are read by mdrun



Derivative generation

Hidden feature of mdrun:
generate potential derivatives using Akima splines
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Exercise

Derive an implicit solvent model for methane in water

Determine a PMF, make a tabulated potential function

Run implicit solvent simulations and compare with explicit solvent


	What is coarse graining?
	Why use coarse graining?
	Reducing the number of degrees of freedom
	Why coarse grain?
	Exact coarse graining
	Exact coarse graining
	Range of validity
	Dynamics
	$n$-body expansion
	Pair potential approximations
	Obtaining infinite dilution potentials
	PMF: an entropy correction
	Defining effective pair potential
	Effec. pair pot.: iterative Boltzmann inversion
	Effective pair potential: inverse Monte Carlo
	Systematic coarse-graining of polymers
	Effective pair potential: liquid benzene
	Effective pair potential: SPC/E water
	Example: ions in implicit solvent
	Calculating PMF's between ions
	Na$^+$-Cl$^-$ solvent-averaged interaction
	Na$^+$-Cl$^-$ solvent separated pair
	Na$^+$-Cl$^-$ solvent-averaged interaction
	Eq. charged solvent-averaged interaction
	Solute dependent dielectric permittivity
	Implicit solvent results
	Excess coordination (up to 0.8 nm)
	Direct comparison with experiment
	Gromacs user tabulated functions
	Derivative generation
	Exercise

