
Replica exchange molecular dynamics

Advanced molecular dynamics course, KTH

Dr Mark Abraham (mjab@kth.se)

Ion channels

Protein folding

Markov state models

Sampling is often frustrated

I many different motions (bonds, angles, side chains, secondary
structure deformation)

I different motions have different time scales
I difficult to parameterize a model that gets it all right
I more difficult to sample from it afterwards

Barriers in MD

Frustration from barriers

I barriers of more than a few kT exist, and are hard to cross
I need extremely large amount of brute-force sampling to get

over them
I makes solving problems like protein folding exceedingly

computationally expensive

Ways to grapple with the problem

I give up on the fine detail, and use a coarse-graining approach
(next Tuesday’s topic)

I accelerate the sampling (work smarter! Today’s topic)
I throw more hardware at it (e.g. Folding@Home)
I write faster software (hard, very hard; also next Tuesday’s

topic)

Accelerating the sampling

I if the problem is that kT is too small. . .
1. increase T
2. sample widely
3. . . .
4. profit!

I unless the landscape changes. . . . (gulp)

Landscapes change with temperature

Simulated tempering

I a Monte Carlo approach to permit system to move in the space
of a “control parameter”

I typically that is temperature
I only collect data when the system returns to the parameter

value of interest
I this is correct if the (Metropolis) exchange criterion is correctly

constructed

For a state s,

P((β, s)→ (β′, s)) = min(1, w(β′, s)
w(β, s))

where β = 1
kT and w(β, s) = exp[−βU(s) + g(β)]

Simulated tempering (2)

I correct if the exchange criterion is constructed correctly
I the optimal g(β) is the free energy. . .
I so you’re good if you already know the relative likelihood of

each conformation at each temperature. . .
I works great if you already know the answer to a harder problem

than the original
I (but you can use an iterative scheme to converge on the

answer)

Parallel tempering (a.k.a. replica exchange)

I side-steps the prior-knowledge problem by running an
independent copy of the simulation at each control parameter

I (note, throwing more hardware at the problem!)
I now the exchange is between copies at different control

parameters, each of which is known to be sampled from a
correct ensemble already

I this eliminates g(β) from the generalized exchange criterion. . .

Parallel tempering

Rescaling the momenta

I when proposing an exchange, can do anything to any
coordinate

I accept exchange only when detailed balance is preserved
I it is convenient for the average KE after exchanges to be

consistent with the target ensemble
I so rescale the momenta as

pnew
i =

√
T old

T new pold
i

Parallel tempering - the exchange criterion

P((β, s)↔ (β′, s ′)) = min(1, w(β, s ′)w(β′, s)
w(β, s)w(β′s ′))

For Boltzmann weights, this reduces to

P((β, s)↔ (β′, s ′)) = min(1, exp[(β′ − β)(U(s ′)− U(s))])

Parallel tempering - understanding the exchanges

Is this real?

I recall that P(β, s) ∝ exp[−βU(s)]
I any scheme that satisfies detailed balance forms a Markov

chain whose stationary distribution is the target (generalized)
ensemble

I so we require only that
P(β, s)P((β, s)→ (β′, s)) = P(β′, s ′)P((β′, s ′)→ (β, s ′))

I which is what was constructed!
I However, dynamical information is lost when exchanges happen

Might this work?

I high-temperature replicas hopefully can cross barriers
I if the conformations they sample are representative of

lower-temperature behaviour, then they will be able to
exchange down

I if not, they won’t

Ensembles commonly used

I natural to use the NVT ensemble with an increasing range of T
and constant V

I remember that we must rescale the velocities to suit the new
ensemble in order to construct the above exchange criterion

I probably this should use a velocity-Verlet integrator (x and v
at same time)

I in principle, can use other ensembles like NPT

Ensembles commonly used

I NVT at constant volume must increase P with T
I that seems unphysical
I worse, the force fields are parameterized for a fixed temperature
I but the method doesn’t require that the ensembles correspond

to physical ones
I merely need overlap of energy distribution
I the size of the overlap determines the probability of accepting

an exchange

Problems with replica exchange

I molecular simulations typically need lots of water
I thus lots of degrees of freedom
I energy of the system grows linearly with system size
I width of energy distributions grow as

√
size

I need either more replicas or accept lower overlap

Unphysics is liberating

I if there’s no need to be physical, then may as well be explicit
about it

I large number of proposed schemes

Example: resolution exchange
I run replicas at different scales of coarse graining
I at exchange attempts, not only rescale velocities, but

reconstruct the coordinates at higher/lower grain level

Hamiltonian replica exchange

I T isn’t the only possible control parameter
I could gradually turn on a restraint or biasing potential
I control parameters can be multi-dimensional, e.g. in a

free-energy calculation, could change both alchemical
transformation parameter λ and T

Replica exchange with solute tempering (REST)

I selectively “heat” only a small region of the system
I modify the parameters to scale the energy, rather than heating

(recall that P(β, s) ∝ exp[−βU(s)])
I advantage that the energy distribution of only part of the

system increases over control parameter space
I needs many fewer replicas for given control parameter space
I implemented in many MD packages, including GROMACS, by

PLUMED plugin (https://www.plumed.org/)

Choices in molecular dynamics studies

I Solvation model
I Resolution of model physics
I Force field
I Statistical ensemble to sample
I Starting condition(s)
I Simulation time step
I Observables
I Data collection rate

Additional choices in replica exchange studies

I Which control parameter? (T , λ)
I At which control parameters to collect data
I Range of control parameter space
I Number of replicas
I Spacing of replicas
I Exchange probability
I Exchange attempt interval

Shameless plug: https://dx.doi.org/10.1021/ct800016r

https://dx.doi.org/10.1021/ct800016r

Average Exchange probability

Recall

P((β, s)↔ (β′, s ′)) = min(1, exp[(β′ − β)(U(s ′)− U(s))])

So

Pave((β, s)↔ (β′, s ′)) =
∫ ∫

min(1, exp[(β′−β)(U1(s ′)−U2(s))]) dU1 dU2

Generally, you want replicas whose temperatures increase roughly
exponentially

Web server for helping choose T for REMD

http://folding.bmc.uu.se/remd-temperature-generator/

Based on https://dx.doi.org/10.1039/B716554D

http://folding.bmc.uu.se/remd-temperature-generator/
https://dx.doi.org/10.1039/B716554D

Interval between exchange attempts

I Ideally, after MD step, attempt exchange
I Doesn’t really matter if the exchange probability is low, you’ll

get some exchanges eventually
I Does this spamming help?

Interval between exchange attempts

I observables like potential energy have autocorrelation times
I for e.g. protein in water, it’s about 1 ps
I if you exchange more frequently than that, you get back

exchanges https://dx.doi.org/10.1063/1.2404954
I so either estimate or measure the autocorrelation time, and

exchange about that often

https://dx.doi.org/10.1063/1.2404954

Practical replica exchange in GROMACS

I uses the multi-simulation feature which requires building with
an MPI library

I need enough resources for each simulation on its own
I put each simulation in a unique directory, using the multidir

feature
I equilibrate there
I choose the number of simulation steps between exchange

attempts on the command line
I use the most recent versions of GROMACS for minimal

communication between simulations

De-multiplexing

I some MD packages write a continuous trajectory of each
simulation system

I others (including GROMACS) write a continuous ensemble
I demux.pl script in the GROMACS installation will convert the

trajectory files between the two, based on the exchange
information in the log file

Questions?

Tutorial
Run the online Jupyter notebook via a binder at https://mybinder.
org/v2/gl/gromacs%%2Fonline-tutorials%%2Fsimple-remd/main or
the “Default binder” link from https:
//gitlab.com/gromacs/online-tutorials/simple-remd/-/tree/main.

You can access the git repository containing the materials via
g i t c l o n e h t t p s : // g i t l a b . com/gromacs / on l i n e− t u t o r i a l s / s imp le−remd . g i t ``

Or download as as zip archive from
https://gitlab.com/gromacs/online-tutorials/simple-remd/-/
archive/main/simple-remd-main.zip.
Optional
Build MPI-enabled GROMACS. Get e.g. openmpi or mpich2
packages for your distro. Then configure GROMACS as normal, but
add the following flag to the CMake line:
cmake −DGMX_MPI=on

https://mybinder.org/v2/gl/gromacs%%2Fonline-tutorials%%2Fsimple-remd/main
https://mybinder.org/v2/gl/gromacs%%2Fonline-tutorials%%2Fsimple-remd/main
https://gitlab.com/gromacs/online-tutorials/simple-remd/-/tree/main
https://gitlab.com/gromacs/online-tutorials/simple-remd/-/tree/main
https://gitlab.com/gromacs/online-tutorials/simple-remd/-/archive/main/simple-remd-main.zip
https://gitlab.com/gromacs/online-tutorials/simple-remd/-/archive/main/simple-remd-main.zip

