Advanced Molecular Dynamics

Tricks for more complex models

May 11, 2021

Energy Minimization

Steepest descent

- Calculate $U(\vec{r}), g(\vec{r}) = \nabla U(\vec{r})$ at starting point p_0
- $g(\vec{r})$ is a vector: the search direction
- Find the lowest value of $U(\vec{r})$ along this line (one dimensional minimization).
- Repeat with new point p_1 , etc.
- How to do the line minimization?

Line minimization

- It is possible to calculate the onedimensional minimum
- However, our problem is special:
 - It is expensive to calculate $U(\vec{r})$
 - We're not *that* interested in the best possible minimum. If we're close to it, it's better to choose a new search direction.

- Take a step along $g(\vec{r})$
- Is the value of $U(\vec{r})$ lower? Accept it, and take a longer step next time.
- Is the value of $U(\vec{r})$ higher? There must be a local minimum between this and the starting point, so take the next step halfway between them.
- Repeat until $g(\vec{r})$, or step size is sufficiently small.

Steepest descent

- Stable and very fast initially (large gradient)
 - Good to get rid of bad contacts
- Quite slow at the final stage
 - Bad for finding exact minimum point
- Very slow convergence for some types of functions (narrow valleys)

Conjugate gradient

- Try to fix the slow convergence problem
- Start with a first step of steepest descent
- Instead of using the gradient, select the next search direction v_k as

$$v_{k} = -g_{k} + \gamma_{k} v_{k-1}$$
 Memory from previous step

$$\gamma_{k} = \frac{g_{k} \cdot g_{k}}{g_{k-1} \cdot g_{k-1}}$$
 The larger the previous
gradient was,
the smaller memory term

Conjugate gradient

Limitations of energy minimization

- Most energy landscapes of interest (polymers, proteins) are very complex and have very many local minima
- Energy minimization only brings you to a local minimum
- Energy minimization A is good for fixing "bad" initial conformations, but not for much more!

hias ~ roughness

Constraints

and other tricks

Modeling chemical bonds

- The potential of a chemical bonds is close to a Morse potential
- Usually approximated by a harmonic potential
- But:
 - for constant is large
 - masses are small (H)
 - quantum oscillator
 - mainly in the ground state
- Fixing the bond length is a better description

Constraints

- Fixing bond length leads to constraints
 - holonomic constraints depend only on x, not on velocities or time
- Constraints remove degrees of freedom:
 - the equations of motions are modified
- Constraining bonds removes the fastest motions in the system -> larger time steps!

Constraint equations

Constraint equations:

$$\sigma_k(\mathbf{r}_1 \dots \mathbf{r}_N) = 0; \ k = 1 \dots K$$

e.g.
$$(\mathbf{r}_1 - \mathbf{r}_2)^2 - b^2 = 0$$

The constraint equations can be added to the potential (or better: Hamiltonian) multiplied by a Lagrange multiplier giving the force:

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\frac{\partial}{\partial \mathbf{r}_i} \left(V + \sum_{k=1}^K \lambda_k \sigma_k \right)$$

thus there is a constraint force: $\mathbf{G}_i = -\sum_{k=1}^{N} \lambda_k \frac{\partial \sigma_k}{\partial \mathbf{r}_k}$

Set of non-linear equations

- Constrained bonds couple to create a set of coupled non-linear equations
- Solving these can be difficult
- Simple solution: SHAKE
 - loop over all bonds and reset the bond lengths to their target length by displacing atoms in the old bond direction
 - continue until converged
 - determine constraint F from dX

SETTLE for water

- The most used water models have rigid bonds and angle
- The non-linear equations can be solved analytically for 3 atoms coupled by 3 distance constraints
- This algorithm is called SETTLE
 - exact
 - faster than SHAKE

Constraints and parallel simulations

- SHAKE needs 10 50 iterations
 - in parallel simulations this means adding
 10 50 communication events
- In parallel a method with less communication is required
 - one such method: LINCS (LINear Constraint Solver)

LINCS

- Non-linear constraint equations can be written as an iterative set of linear matrix equations
 - solve using conjugate gradient (MSHAKE)
 - solve using a series expansion (LINCS)
- Only 1 or 2 iterations are required

LINCS parallelization

- The order of matrix expansion corresponds to a bond connectivity count
- We only need to communicate atoms connected up to this count

example of parallelization over 3 processors/domains

Virtual interaction sites

Mathematical trick: define a new potential U' with is a function of **s**:

$$U(\mathbf{r}) = U'(\mathbf{r}, \mathbf{s}(\mathbf{r}))$$

The force now has a contribution from the direct derivative and indirectly though **s**:

$$F_{i}(\mathbf{r}) = -\frac{\partial U(\mathbf{r})}{\partial \mathbf{r}_{i}} = -\frac{\partial U'(\mathbf{r}, \mathbf{s}(\mathbf{r}))}{\partial \mathbf{r}_{i}}$$
$$= -\frac{\partial U'(\mathbf{r}, \mathbf{s})}{\partial \mathbf{r}_{i}} - \frac{\partial U'(\mathbf{r}, \mathbf{s})}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{r}_{i}}$$

Why do this?

Constraints on bonds with H only

- Most force fields have been parametrised with only bonds involving hydrogens constrained
- No performance gain of constraining all bonds when using a 2 fs time step
 - Better to constrain only bonds with hydrogens

Virtual interaction sites in water

- Charge centers often don't coincide with mass or LJ centers
 - many water models use virtual sites
 - TIP4P (c)
 - TIP5P (d)

Virtual sites can speed up MD

- After constraining all bonds the fastest motions are the angle vibrations involving H
- Replace H masses by virtual interaction sites:
 - time-step can be increased from 2 to 5 fs
 - you loose a few degrees of angular spread

Multiple time stepping

- The force can be split into:
 - a fast varying and a slow varying part
 - or a short-range and long-range part:

 $\mathbf{F}=\mathbf{F}_{\mathrm{SR}}+\mathbf{F}_{\mathrm{LR}}$

• Integrate using a reversible Trotter scheme using time steps Δt and $n\Delta t$:

$$\mathbf{v}(t + \frac{\Delta t}{2}) = \begin{cases} \mathbf{v}(t - \frac{\Delta t}{2}) + \frac{1}{m} \left[\mathbf{F}_{\mathrm{SR}}(t) + n \mathbf{F}_{\mathrm{LR}}(t) \right] \Delta t &, \text{ step } \% \ n = 0 \\ \mathbf{v}(t - \frac{\Delta t}{2}) + \frac{1}{m} \mathbf{F}_{\mathrm{SR}}(t) \Delta t &, \text{ step } \% \ n \neq 0 \end{cases}$$

• Often used for the mesh part of PME

Mathematical trick: define a new potential U' with is a function of **s**:

$$U(\mathbf{r}) = U'(\mathbf{r}, \mathbf{s}(\mathbf{r})) = \min_{\mathbf{s}} U'(\mathbf{r}, \mathbf{s})$$

The force now has a contribution from the direct derivative and not indirectly though s:

$$F_{i}(\mathbf{r}) = -\frac{\partial U(\mathbf{r})}{\partial \mathbf{r}_{i}} = -\frac{\partial U'(\mathbf{r}, \mathbf{s}(\mathbf{r}))}{\partial \mathbf{r}_{i}}$$
$$= -\frac{\partial U'(\mathbf{r}, \mathbf{s})}{\partial \mathbf{r}_{i}} - \frac{\partial U'(\mathbf{r}, \mathbf{s})}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{r}_{i}}$$

Why do this?

Polarizable models

- Putting a charge on a shell "particle" lets the charge distribution adapt to the environment, this results in polarizable models:
 - polarizable water
 - polarizable ions
 - polarizable ...

example of a "simple" polarizable water model, the polarizability can be tuned by the force constant of the red spring

Cost of polarization

- Using shell particles requires minimization
 - 5-20 iterations required:
 - simulations 5-20 times slower!
- One solution: use Drude oscillators
 - give the additional charge a small mass
 - do MD with low temperature for these
 - advantage: cheap
 - disadvantage: no proper Hamiltonian
 - no proper ensemble, depends on m_q, T_q

Water models

- There are about 100 simple 3 and 4 site water models
 - most popular: TIP3P,SPC,SPC/E,TIP4P, used with force-fields
- There are dozens of more complex, polarizable and charge density models, area of active research

Short list: http://www.lsbu.ac.uk/water/models.html

Some water models

Model	Type	- 8 6	a k I mal ⁻¹⁶			(e)	(a) (a)	۵°	m°
1900er	8	O A	EKJ MOI	<u> '' ^</u>	12.7	41 (C)	42 (E)	0	Ψ
SSD [S11]	<u>*</u>	3.016	15.319	-	-	-	-	109.47	109.47
SPC [94]	a	3.166	0.650	1.0000	-	+0.410	-0.8200	109.47	-
SPC/E ^[3]	a	3.166	0.650	1.0000	-	+0.4238	-0.8476	109.47	-
SPC/HW (D ₂ O) [220]	a	3.166	0.650	1.0000	-	+0.4350	-0.8700	109.47	-
SPC/Fw ^{2[994]}	a	3.166	0.650	1.0120	-	+0.410	-0.8200	113.24	-
TIP3P [180]	a	3.15061	0.6364	0.9572	-	+0.4170	-0.8340	104.52	-
TIP3P/Fw ^{2 [994]}	a	3.1506	0.6368	0.9600	-	+0.4170	-0.8340	104.5	-
PPC ^{1, 2 [3]}	b	3.23400	0.6000	0.9430	0.06	+0.5170	-1.0340	106.00	127.00
TIP4P [180]	C	3.15365	0.6480	0.9572	0.15	+0.5200	-1.0400	104.52	52.26
TIP4P-Ew ^[649]	С	3.16435	0.680946	0.9572	0.125	+0.52422	-1.04844	104.52	52.26
TIP4P-FQ ^[197]	C	3.15365	0.6480	0.9572	0.15	+0.63 ¹	-1.26 ¹	104.52	52.26
TIP4P/Ice ^[838]	С	3.1668	0.8822	0.9572	0.1577	+0.5897	-1.1794	104.52	52.26
TIP4P/2005 ^[984]	C	3.1589	0.7749	0.9572	0.1546	+0.5564	-1.1128	104.52	52.26
SWFLEX-AI ^{2[201]}	С	four terms used		0.968 ¹	0.14 ^{1,3}	+0.6213	-1.2459	102.7 ¹	51.35 ¹
COS/G3 [704] 9	C	3.17459	0.9445	1.0000	0.15	+0.450672	-0.901344	109.47	-
COS/D [1617] 9 16	С	3.4365	0.5119	0.9572	0.257	+0.5863	-1.1726	104.52	-
GCPM ^{2 [859] 10}	C	3.69 ^{4,11}	0.9146 ⁴	0.9572	0.27	+0.6113	-1.2226	104.52	52.26
SWM4-NDP ^{2 13 [933]}	С	3.18395	0.88257	0.9572	0.24034	0.55733	-1.11466	104.52	52.26
ST2 ^{[872] 12}	d	3.10000	0.31694	1.0000	0.80	+0.24357	-0.24357	109.47	109.47
TIP5P [180]	d	3.12000	0.6694	0.9572	0.70	+0.2410	-0.2410	104.52	109.47
TIP5P-Ew ^[619]	d	3.097	0.7448	0.9572	0.70	+0.2410	-0.2410	104.52	109.47
TTM2-F ^{[1027] 14}	С	five parameters used		0.9572	0.70	+0.574	-1.148	104.52	52.26
POL5/TZ ^{2 [256]}	d	2.9837 ⁴	4	0.9572	0.5	varies ⁵	-0.42188	104.52	109.47
Six-site ^[491]	c/d ⁷	3.115 ₀₀ 0.673 _{НН}	0.715 ₀₀ 0.115 _{НН}	0.980	0.8892L 0.230 _M	+0.477	-0.044L -0.866м	108.00	111.00
QCT ^[1251]	a ¹⁵	3.140	0.753	0.9614	-	+0.6064	-1.2128	104.067	-

¹ Average values; ² Polarizable models; ³ charge = -2.48856; ⁴ Buckingham potential^a. This exponential potential presents

Some water model properties

Model	Dipole moment ^e	Dielectric constant	Self diffusion, 10 ⁻⁵ cm ² /s	Average configurational energy, kJ mol ⁻¹	Density maximum, °C	Expansion coefficient, 10 ⁻⁴ °C ⁻¹
SSD	2.35 ^[511]	72 ^[511]	2.13 ^[511]	-40.2 ^[511]	-13 ^[511]	-
SPC	2.27 [181]	65 ^[185]	3.85 ^[182]	-41.0 ^[185]	-45 ^[983]	7.3 ^[704] **
SPC/E	2.35 ^[3]	71 ^[3]	2.49 ^[182]	-41.5 ^[3]	-38 ^[183]	5.14 ^[994]
SPC/Fw	2.39 ^[994]	79.63 ^[994]	2.32 ^[994]	-	-	4.98 ^[994]
PPC	2.52 ^[3]	77 ^[3]	2.6 ^[3]	-43.2 ^[3]	+4 ^[184]	-
TIP3P	2.35 ^[180]	82 ^[3]	5.19 ^[182]	-41.1 ^[180]	-91 ^[983]	9.2 ^[180]
TIP3P/Fw	2.57 ^[994]	193 ^[994]	3.53 ^[994]	-	-	7.81 ^[994]
TIP4P	2.18 ^[3,180]	53 ^{a [3]}	3.29 ^[182]	-41.8 ^[180]	-25 ^[180]	4.4 ^[180]
TIP4P-Ew	2.32 ^[649]	62.9 ^[649]	2.4 ^[649]	-46.5 ^[649]	+1 ^[649]	3.1 ^[649]
TIP4P-FQ	2.64 ^[197]	79 ^[197]	1.93 ^[197]	-41.4 ^[201]	+7 [197]	-
TIP4P/2005	2.305 ^[984]	60 ^[984]	2.08 ^[984]	-	+5 ^[984]	2.8 ^[984]
SWFLEX-AI	2.69 ^[201]	116 ^[201]	3.66 ^[201]	-41.7 ^[201]	-	-
COS/G3 **	2.57 ^[704]	88 ^[704]	2.6 ^[704]	-41.1 ^[704]	-	7.0 ^[704]
COS/D	2.43 ^[1617]	69.8 ^[1617]	2.5 ^[1617]	-41.8 ^[1617]	-	-
GCPM	2.723 ^[859]	84.3 ^[859]	2.26 ^[859]	-44.8 ^[859]	-13 ^[859]	-
SWM4-NDP	2.461 ^[933]	79 ^[933]	2.33 ^[933]	-41.5 ^[933]	-	-
TIP5P	2.29 ^[180]	81.5 ^[180]	2.62 ^[182]	-41.3 ^[180]	+4 [180]	6.3 ^[180]
TIP5P-Ew	2.29 ^[619]	92 ^[619]	2.8 ^[619]	-	+8 [619]	4.9 ^[619]
TTM2-F	2.67 ^[1027]	67.2 ^[1027]	1.4 ^[1027]	-45.1 ^[1027]	-	-
POL5/TZ	2.712 ^[256]	98 ^[256]	1.81 ^[256]	-41.5 ^[256]	+25 [256]	-
Six-site *	1.89 ^[491]	33 ^[491]	-	-	+14 [491]	2.4 ^[491]
QCT **	1.85 ^[1251]	-	1.5 ^[1251]	-42.7 ^[1251]	+10 [1251]	3.5 ^[1251]
Experimental	2.95	78.4	2.30	-41.5 [180]	+3.984	2.53

All the data is at 25°C and 1 atm, except * at 20°C and ** at 27°C.

Popular water models

- SPC and TIP3P often used for the parametrization of force fields
 - diel. const. off (SPC 65, TIP3P 100)
 - expan. coeff too high (too little structure)
 - leads to less accurate solvation
- SPC/E and TIP4P are better
 - SPC/E good dielectric constant (72)
 - TIP4P more expensive (4 sites)
- In practice all the details might not matter

- TIP4P 4-site model reparametrized in 2005
 - to reproduce as many properties as possible
 - parametrization including polarization correction for heat of vaporization (as for SPC/E and TIP4P/Ew)
 - parametrized with long-range electrostatics

TIP4P/2005 density maximum

line: experiment circles TIP4P/2005 crosses: TIP4P/Ew

TIP4P/2005 at high pressure

Density of ice phases

Phase diagram

TIP4P/2005

TIP4P/Ew

Water model conclusions

- TIP4P/2005 impressive reproduction of many properties (especially for a non-polarizable model)
 - but dielectric constant is off
- For pure water simulation: use TIP4P/2005
- For anything else: use a model compatible with your force-field
 - personal opinion: use SPC/E (compatible with most force-fields, good diel. const.)
- More (complex) water models will come