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Sub system

Exchange of “things”



“Pure” Molecular Dynamics

• Plain MD conserves Etot=Epot+Ekin=U+K 

• Plain MD generates a constant NVE, 
or microcanonical ensemble 

• This results in reliable dynamics
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Thermal equilibrium

• In practice systems are in thermal 
equilibrium with the environment 

• Simplest constant-T ensemble: 

• constant NVT or canonical ensemble
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Ensemble averages
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What you measure in experiment are 
 ensemble averages

For the canonical ensemble:



Different ensembles

• In the limit of large systems all ensembles 
(or ensemble averages) are identical 

• But how large is large? 
• MD systems are often “small” 

• so you need to think about which 
ensemble to use



Ergodicity

time average = average over many instances



How to generate a canonical ensemble?

• Add a thermostat 

• for instance a Nose-Hoover thermostat:
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Conserved quantity:

Q: mass parameter, 
determines coupling 
strength (time)



Simple velocity scaling

• Nose-Hoover is correct, but second order 
coupling, this can cause oscillations 

• Simple first order velocity scaling 
(Berendsen thermostat):
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Corrected velocity scaling

• Add a stochastic term: Bussi thermostat 
 (JCP 126:014101,2007)
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W is a Wiener process: 
a random process with 
expectation zero, which can be 
constructed from a random walk

Advantage: nice first order decay of deviations

degrees of 
freedom



Stochastic dynamics

• Another option: add friction and noise to 
every degree of freedom: 
 
 
 
 
 

• Advantage: good ergodicity/equilibration 

• Disadvantage: loss of dynamics/inertia
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Dissipative particle dynamics

• Stochastic dynamics on velocity differences 
between particle pairs 

• advantage: preserves hydrodynamics 
• adds some friction (viscosity) 
• you can solve Navier-Stokes equations 

using particles 
• but pair interactions are more complex 

and expensive to calculate



Constant pressure

• Constant NPT ensemble 

• one of the most popular ensembles 
• Use a barostat 

• for instance Parrinello-Rahman: 
 
 
 

• disadvantage second order coupling: 
volume oscillations
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b: box vectors

W: mass parameter



Berendsen pressure coupling

• For equilibration you can use first order 
Berendsen pressure coupling: 

• scale box elements with: 
 
 

• disadvantage: no proper ensemble and 
fluctuations 

• Conclusion: use Berendsen for equilibration 
and Parrinello-Rahman for productions
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Stochastic cell rescaling

• To get the correct ensemble, again add fluctuations to 
Berendsen coupling: 
 

Use the strain:    
 

 

• Velocities are scaled reciprocal to the coordinates 

• First order coupling and the correct ensemble 
• Bernetti, M. and Bussi, G., “Pressure control using stochastic 

cell rescaling”, J. Chem. Phys., 153, 114107 (2020)
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Constant chemical potential

• Constant mu-PT ensemble 

• you can use test particle insertion or 
particle deletion to determine chemical 
potential and remove/add particles 
• but this disrupts dynamics 
• and can be complex to implement and 

use



Reading

• Read Frenkel&Smit II.6


