Advanced Molecular Molecular Dynamics

Technical details

May 11, 2021

Today

 Discuss technical aspects required for MD simulations

How to calculate pressure?

The pressure is the derivative of the free-energy wrt the volume

Pressure definition:
$$P = \frac{2}{V}(E_{\text{kin}} - W)$$

Virial definition:

$$W(\mathbf{r}) = \frac{3}{2}V\frac{dU}{dV}$$
 potential energy

For isotropic scaling:

$$\frac{d\mathbf{r}_i}{dV} = \frac{\mathbf{r}_i}{3V}$$

(virial definitions $rac{d\mathbf{r}_i}{dV} = rac{\mathbf{r}_i}{3V}$ (virial definition can contain different factors)

The viral sum:

$$W(\mathbf{r}) = -\frac{1}{2} \sum_{i} \mathbf{r}_{i} \cdot \mathbf{F}_{i}$$

For pair interactions:
$$W(\mathbf{r}) = -\frac{1}{2} \sum_{i < j}^{i} \mathbf{r}_{ij} \cdot \mathbf{F}_{ij}$$

How to calculate interactions

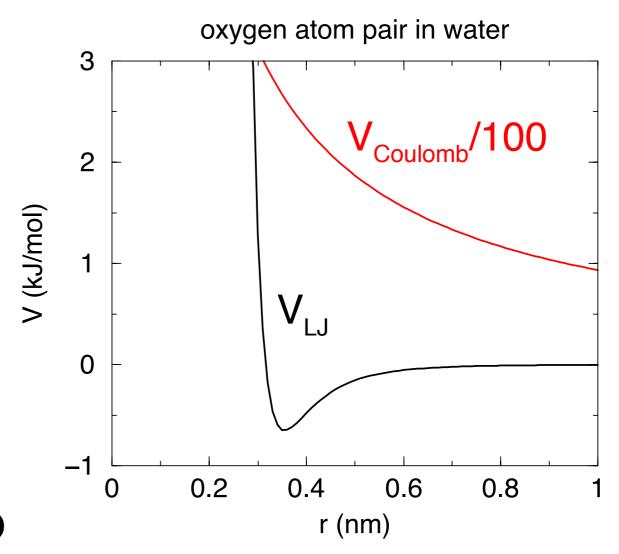
$$U(\mathbf{r}) = \sum_{bonds} U_{bond}(\mathbf{r}) + \sum_{angles} U_{angle}(\mathbf{r}) + \sum_{dihs} U_{dih}(\mathbf{r})$$
$$+ \sum_{i} \sum_{j>i} \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} + \frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6}$$

- We often only need: $\mathbf{F}_i = -\frac{dU}{d\mathbf{r}_i}$
- For bonded interactions: simply loop over items in the sum and calculate F (and U)
- Non-bonded for small molecules: do the double loop
- Cost O(N²): prohibitive for large systems

Non-bonded cut-off

- Cut-off interactions beyond a radius
- Fine for LJ
- Not fine for Coulomb
- Potential should be the integral of the force

$$V_{co}(r) = \begin{cases} V(r) - V(r_c) & r < r_c \\ 0 & r \ge r_c \end{cases}$$



Cut-off effect on Lennard-Jones

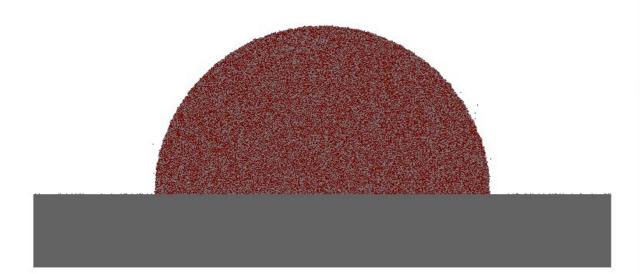
- Lennard-Jones potential decays a r-6
- But one atom sees many others
- For constant density beyond the cut-off, the missing LJ energy is:

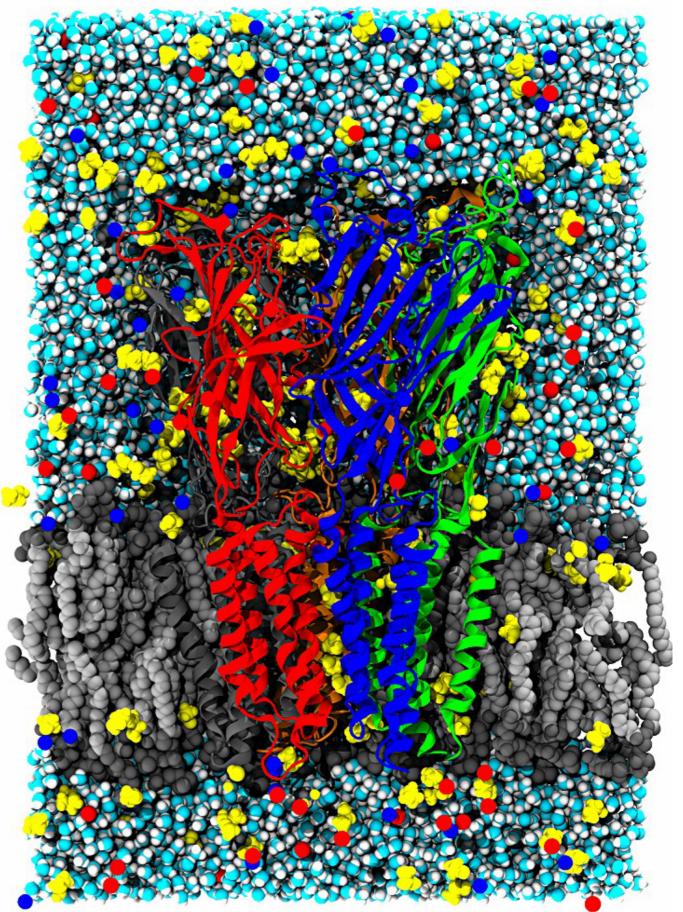
$$U_{LJ} = \int_{r_c}^{\infty} 4\pi r^2 \rho_N \overline{C_{6\,ij}} \frac{1}{r^6} dr = 3\rho_N \overline{C_{6\,ij}} \frac{1}{r_c^3}$$

- This missing attraction can be added: long-range or dispersion correction
- Virial correction is identical, but adds a factor of 6
- The pressure correction can be significant

Inhomogeneous dispersion

- Uniform correction does not work for inhomogeneous systems
- e.g. phase boundaries and lipid membranes



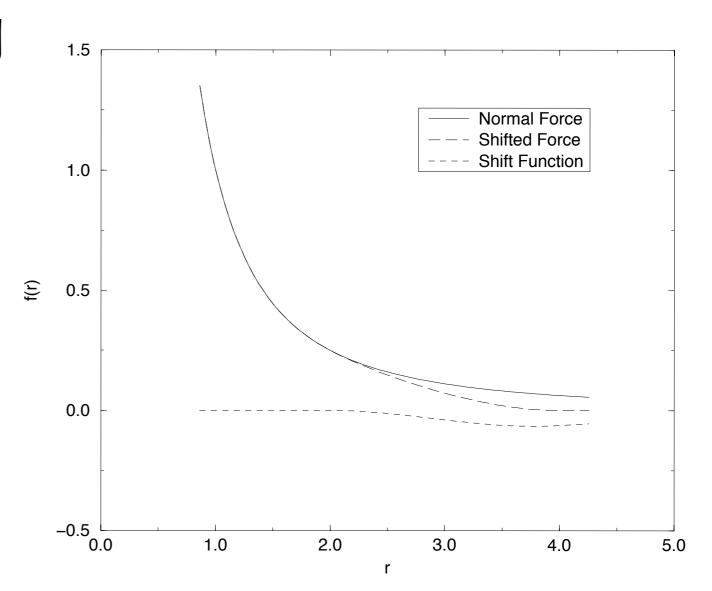


Cut-off & force fields

- The basis, including LJ parameters, of most biomolecular force fields is decades old
- Simulation were done with cut-off's of 0.8/0.9 nm
- Force-fields were parametrized to give the correct density and ΔH_{vap} with the cut-off used
- Using a larger cut-off, or dispersion correction will thus result in a too high density
- To correct this: re-parametrize all LJ interactions
- Advice: use the right cut-off for the force field!

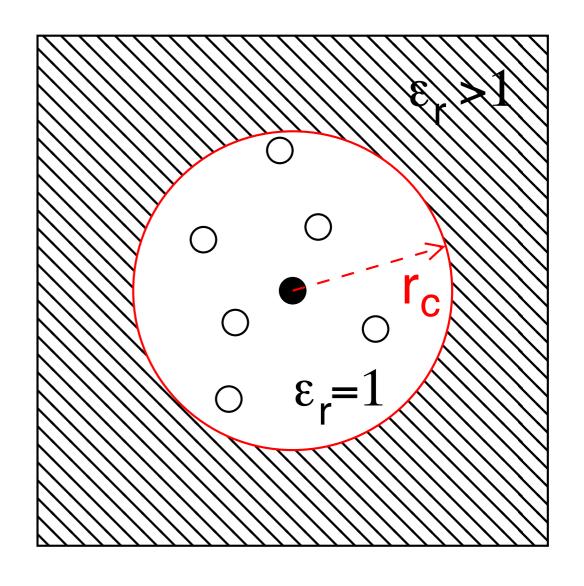
Non-zero force at cut-off

- With a "plain" cut-off: F(r_c)!=0
 - This could give integration errors
 - A huge problem for Coulomb
 - No real issue for LJ
 - larger issues for small r
- Solution:
 - switch F to 0
 - shift V to 0



Coulomb cut-off

- Coulomb interactions decay as 1/r
- Cut-off can't be used
- What to do?
- One option:
 - High dielectric:
 - weak electrostatics
 - use a reaction-field



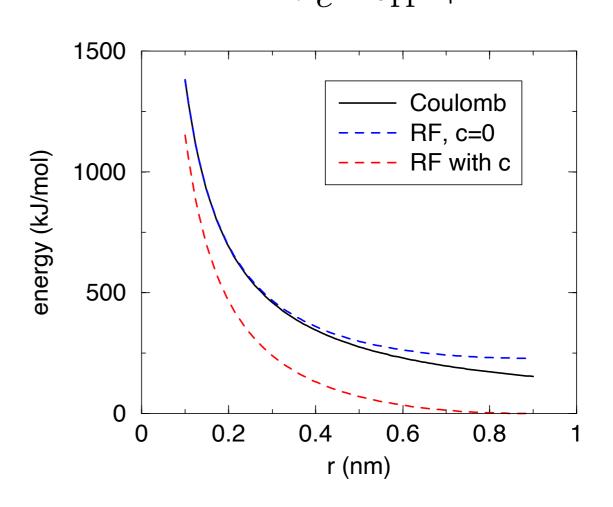
Reaction-field

- Developed for dipoles
- Linear dipole reaction F
- For charges:
 - Additional constant required for V(r_c)=0
 - Implicit assumption:
 - uniform background charge

$$V_{\rm rf} = \frac{q_i q_j}{4\pi\epsilon_0} \left[\frac{1}{r_{ij}} + k r_{ij}^2 - c \right]$$

$$k = \frac{1}{r_c^3} \frac{\epsilon_{\rm rf} - 1}{2\epsilon_{\rm rf} + 1}$$

$$c = \frac{1}{r_c} \frac{3\epsilon_{\rm rf}}{2\epsilon_{\rm rf} + 1}$$



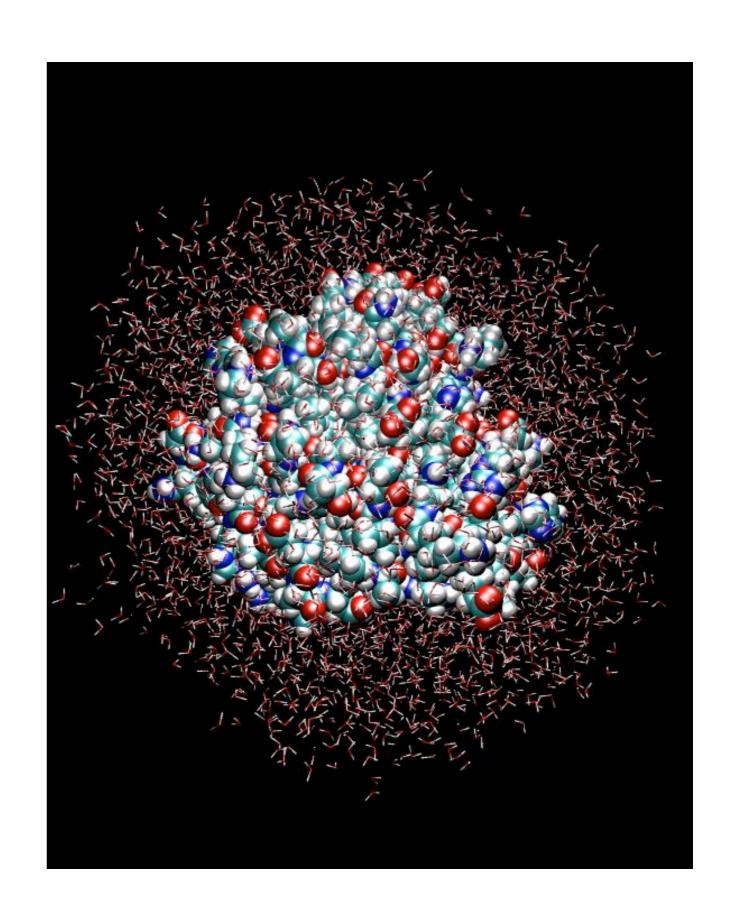
Reaction-field cntd

$$F_{\rm rf}(r_c) = \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{r_c^2} \left[1 - \frac{2\epsilon_{\rm rf} - 2}{2\epsilon_{\rm rf} + 1} \right]$$

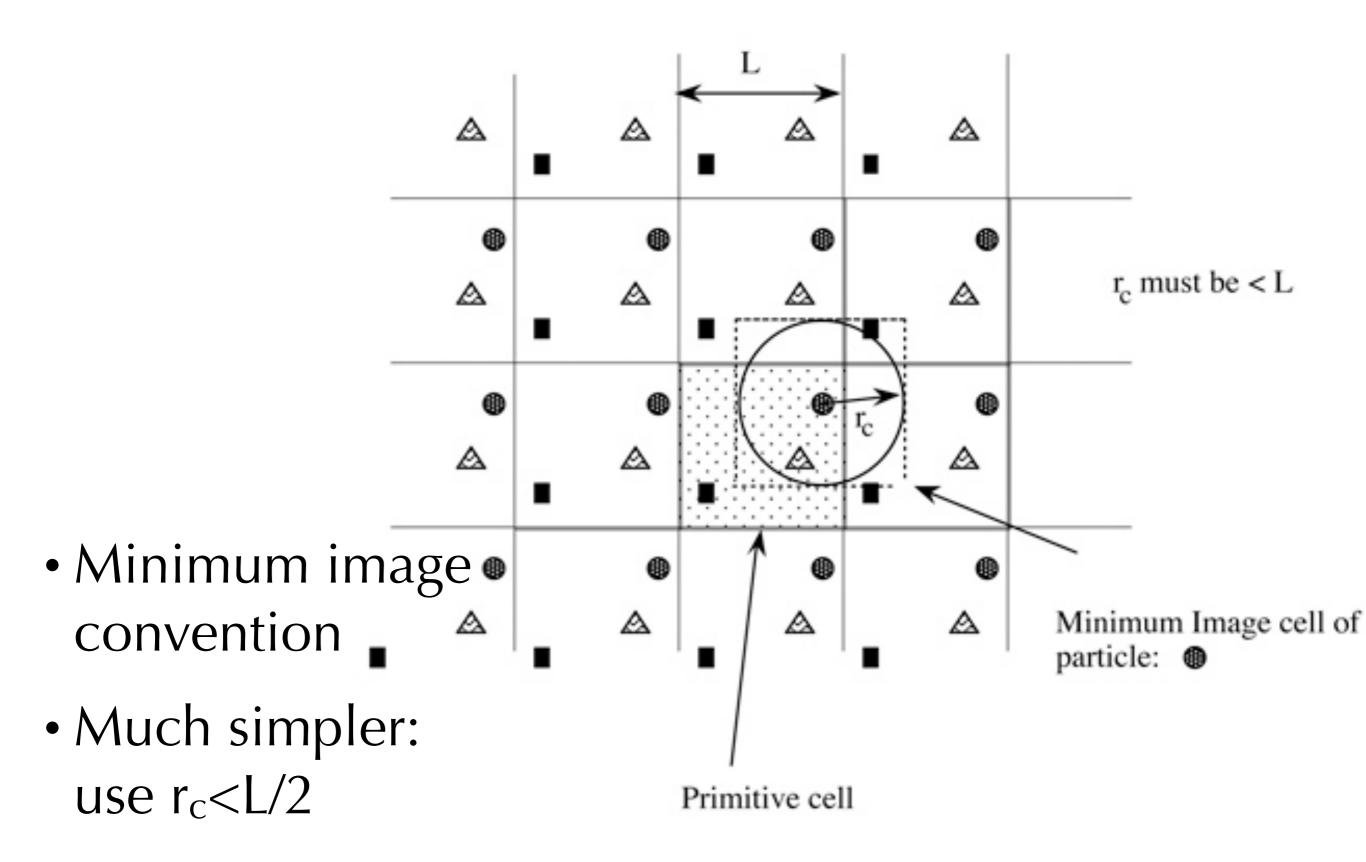
- Issue: $F(r_c)!=0$
- Solution: use $\epsilon_{\rm rf} = \infty$
 - conducting or "tin-foil" boundary condition
- But shouldn't you match the dielectric of the solvent?
 - Integration errors often worse than deviation in dielectric
 - Also, mismatch goes as: $1/\epsilon_r$

Boundary conditions

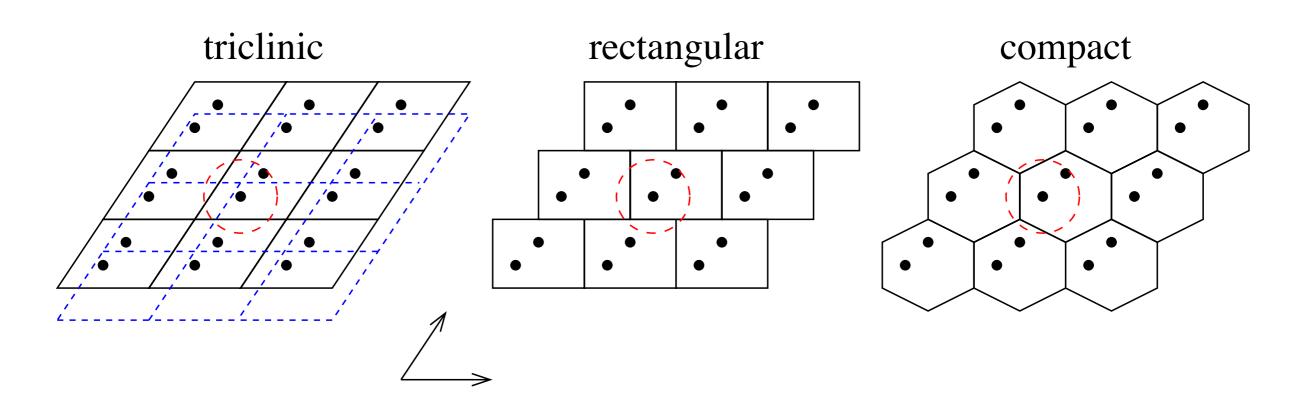
- One option:
 - end the system
- Spherical boundary
- But what happens at the boundary?
 - apolar liquids OK
 - water problematic
- What effects on the pressure?



Periodic boundary conditions



Periodic unit or primitive cell



- Different shapes can represent the same periodic boundary conditions
- What matters is not the shape but the periodic shift vectors
- Different shapes useful for different purposes

3D triclinic unit-cells

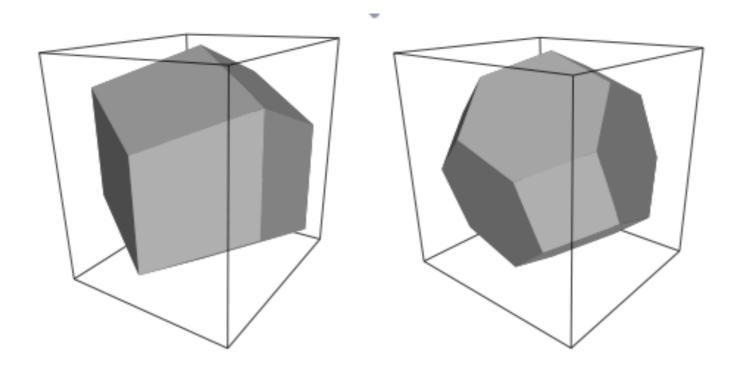
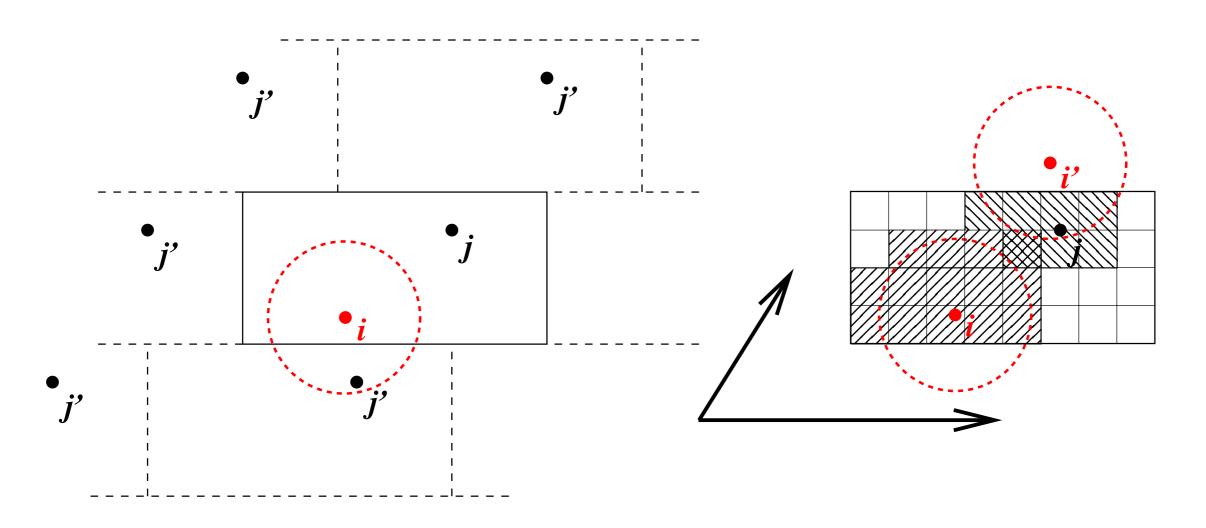


Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type	image	box	box vectors		box vector angles			
	distance	volume	a	b	c	∠bc	∠ac	∠ ab
			d	0	0			
cubic	d	d^3	0	d	0	90°	90°	90°
			0	0	d			
rhombic			d	0	$\frac{1}{2}d$			
dodecahedron	d	$\frac{1}{2}\sqrt{2}d^3$	0	d	$\frac{1}{2}d$	60°	60°	90°
(xy-square)		$0.707 d^3$	0	0	$\frac{1}{2}\sqrt{2}d$			
rhombic			d	$\frac{1}{2}d$	$\frac{1}{2}d$			
dodecahedron	d	$\frac{1}{2}\sqrt{2}d^{3}$	0	$\frac{1}{2}\sqrt{3}d$	$\frac{1}{6}\sqrt{3}d$	60°	60°	60°
(xy-hexagon)		$0.707 d^3$	0	0	$\frac{1}{3}\sqrt{6}d$			
truncated			d	$\frac{1}{3}d$	$-\frac{1}{3}d$			
octahedron	d	$\frac{4}{9}\sqrt{3}d^3$	0	$\frac{2}{3}\sqrt{2}d$	$\frac{1}{3}\sqrt{2}d$	71.53°	109.47°	71.53°
		$0.770 d^3$	0	0	$\frac{1}{3}\sqrt{6}d$			

Calculating periodic interactions



- Calculating all interactions of one i with many j:
 - you can find which j-image you need
 - easier: move i to different periodic shifts
- More on this later ...

Electrostatics in periodic systems

$$V = \frac{f}{2} \sum_{n_x} \sum_{n_y} \sum_{n_z *} \sum_{i} \sum_{j}^{N} \frac{q_i q_j}{\mathbf{r}_{ij,\mathbf{n}}}$$

- We can write down the sum over all charge pairs in all periodic images
- But as Coulomb goes as 1/r, this sum is only conditionally convergent
- Direct sums have bad convergence

Ewald summation

$$V = V_{dir} + V_{rec} + V_0$$

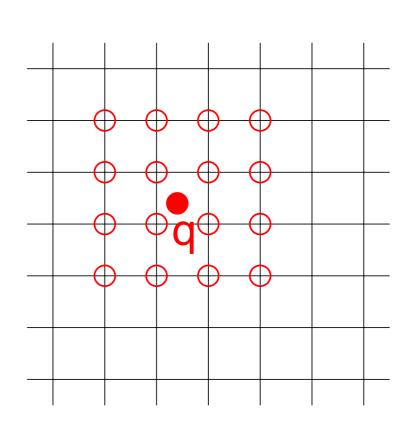
$$V_{dir} = \frac{f}{2} \sum_{i,j}^{N} \sum_{n_x} \sum_{n_y} \sum_{n_z *} q_i q_j \frac{\operatorname{erfc}(\beta r_{ij,\mathbf{n}})}{r_{ij,\mathbf{n}}}$$

$$V_{rec} = \frac{f}{2\pi V} \sum_{i,j}^{N} q_i q_j \sum_{m_x} \sum_{m_y} \sum_{m_z *} \frac{\exp\left(-(\pi \mathbf{m}/\beta)^2 + 2\pi i \mathbf{m} \cdot (\mathbf{r}_i - \mathbf{r}_j)\right)}{\mathbf{m}^2}$$

$$V_0 = -\frac{f\beta}{\sqrt{\pi}} \sum_{i}^{N} q_i$$

Particle mesh methods

- Ewald summation is slow: $O(N^2)$
- · Solution: do the reciprocal part on a mesh
 - Particle-Particle Particle-Mesh (PPPM/P3M)
 - Particle-Mesh Ewald (PME)
 - Most popular SPME (smooth) by Darden et al.
- spread charges on grid
- 3D FFT
- solve in fourier space
- 3D FFT
- gather forces from grid



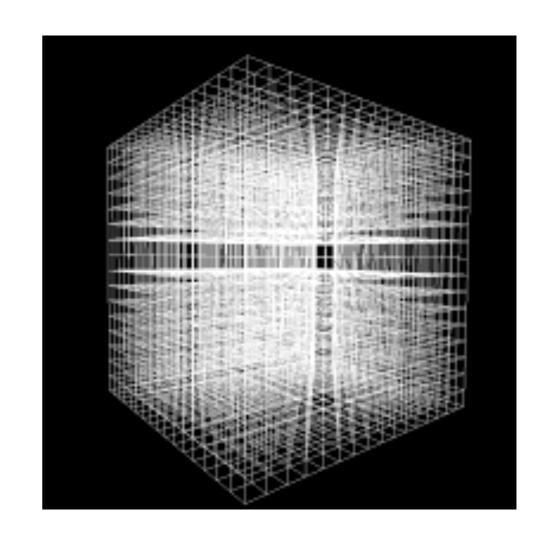
PME

- PME Parameters
 - cut-off
 - smoothing parameter B
 - spreading order S
 - grid size: M_x, M_y, M_z
- Computational cost:
 - direct: $O(r_c^3)$
 - spread: O(#charges*S3)
 - 3D FFT: O(N log(N))

- Accuracy determined by:
 - real space error beyond cut-off: erfc(B r_c)/r_c
 - spreading accuracy
 - spreading order
 - smoothing parameter
 - grid spacing
- Complex, for SPME no simple analytical formula
- But, important for performance and accuracy of simulations!

PME settings in practice

- Complex, but also costly!
- Use what others use with your system and/or software
- Typical settings:
 - order 4: spread 4³=64 points
 - cut-off 0.9 nm
 - grid spacing 0.12 nm
 - #grid point similar to #particles
- Soon: tools to set parameters based on force accuracy
 - But what does a force accuracy of 0.1 kJ/mol/nm² mean?

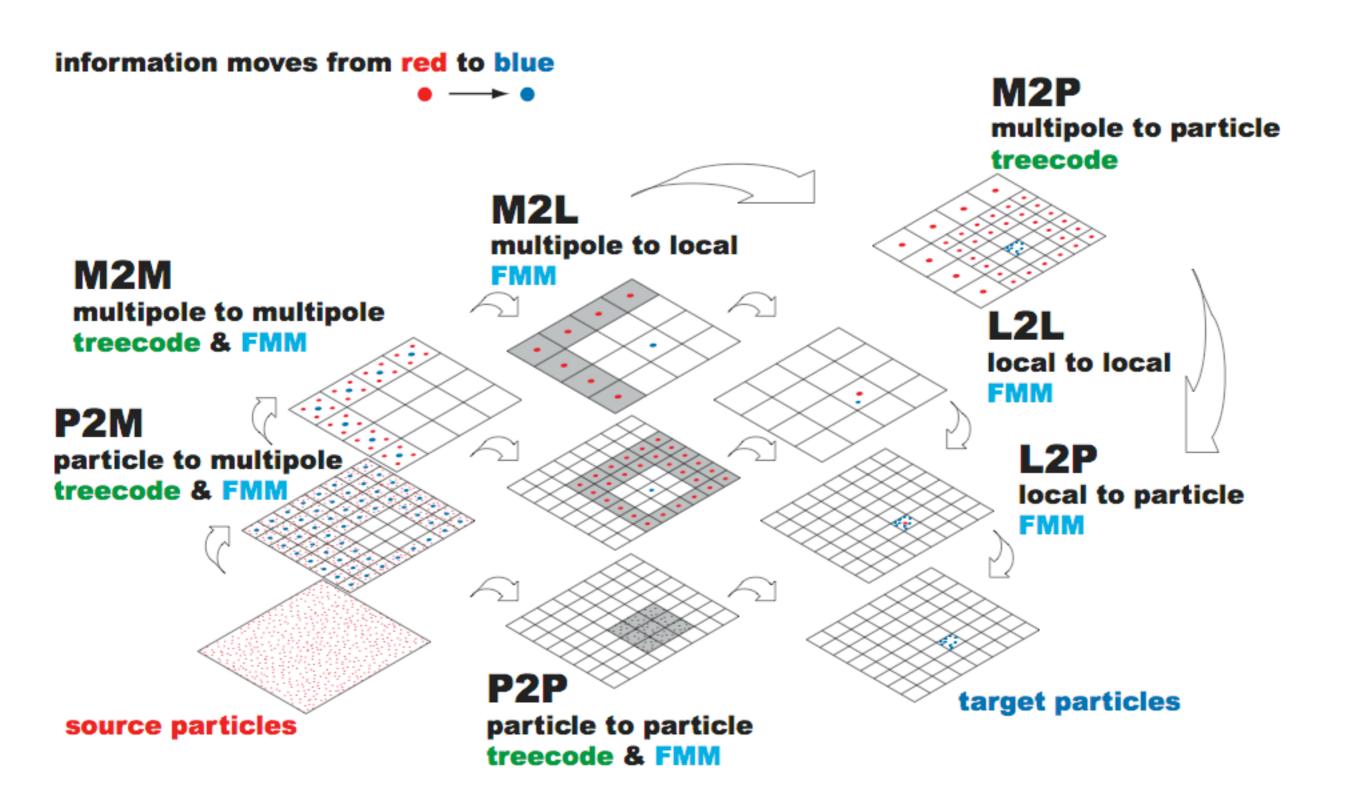


Long-range electrostatics methods

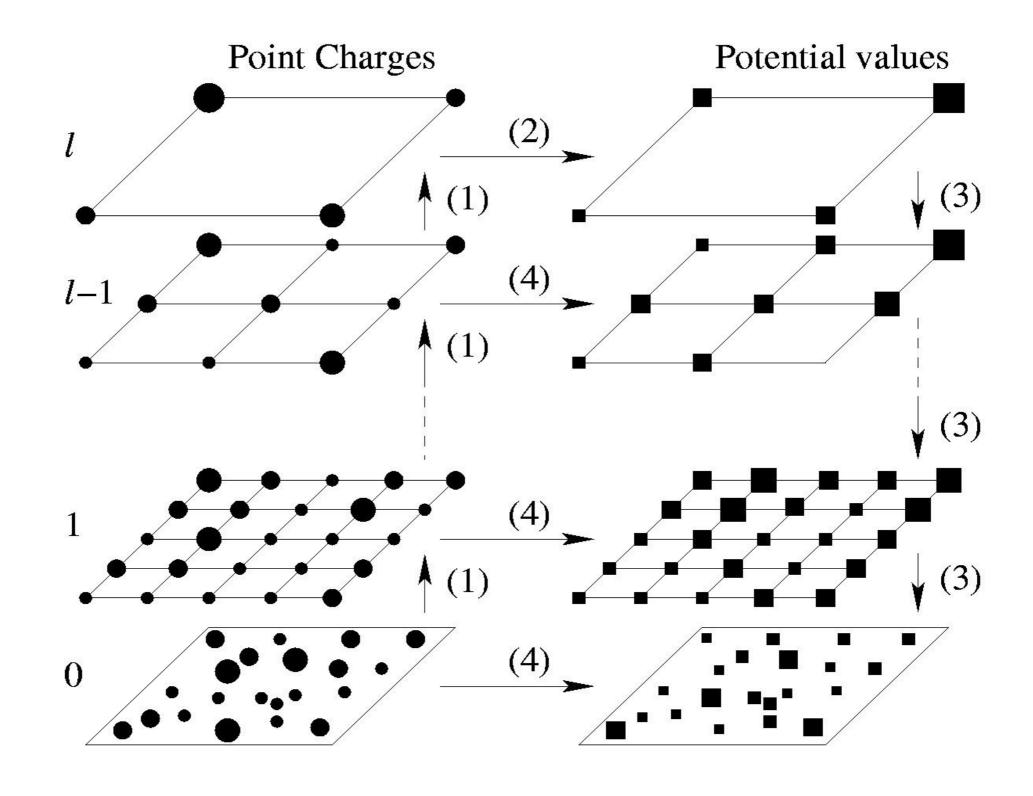
• All methods calculate the same potential and forces

	computational cost	pre-factor	communication	
Ewald summation	O(N ^{3/2})	small (FFT)	high	
PPPM / Particle Mesh Ewald	O(N log N)	small (FFT)	high	
Fast Multipole Method	O(N)	larger	low	
Multigrid Electrostatics	O(N)	larger	low	

Fast multipole method

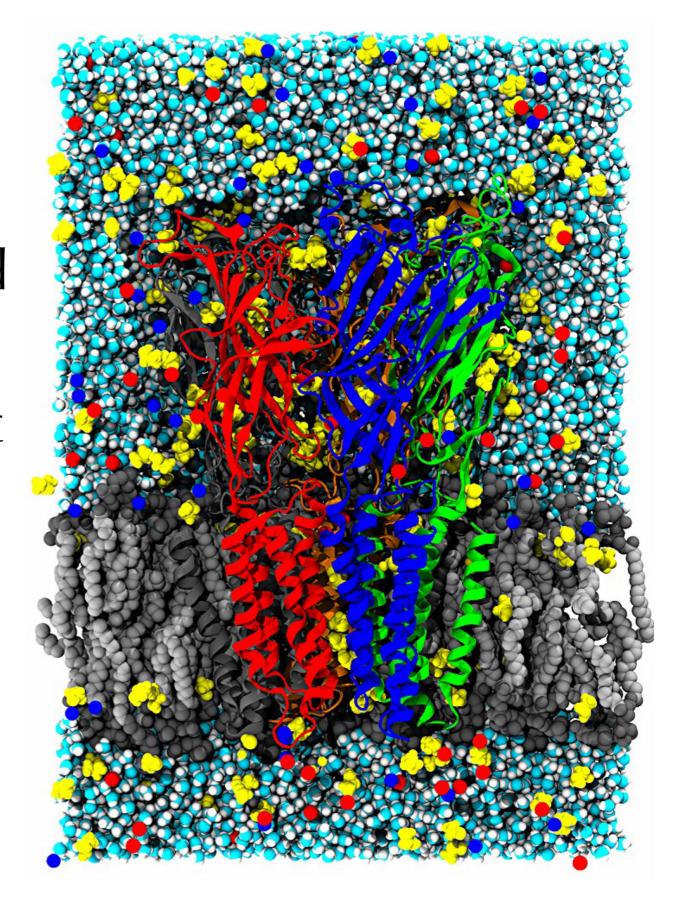


Multigrid electrostatics



PME and charged systems

- With net system charge:
 - implicit assumption:
 - uniform background charge
 - no effect on F, effect on U
- Problems with nonuniform dielectric
- Always safer to neutralize with ions!

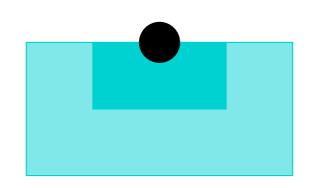


Adding (counter-)ions

- Simply add ions Na+ or Cl- to neutralize
 - Adding just a few ions can lead to sampling problems
- Better: add Na+ and Cl- at physiological concentration, if possible

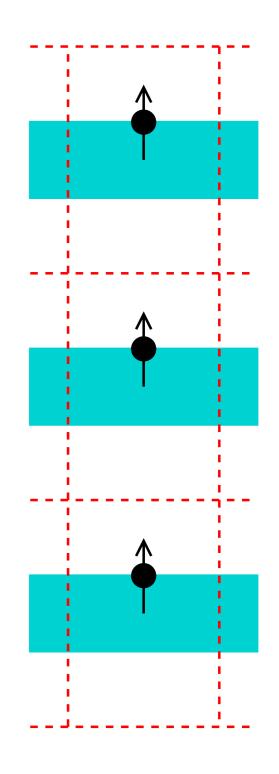
- What is physiological concentration locally?
- Some systems might need different ions
 - DNA/RNA: Na+ or Mg²⁺?

Electrostatics at surfaces



- One surface is impossible, at least 2
- To use PME with PBC:
 - Add 2/3 of vacuum
 - Use dipole correction
 Yeh&Berkowitz (JCP 111,3155)

$$U_z = \frac{2\pi}{V} M_z^2 , \quad F_{z,i} = -\frac{4\pi q_i}{V} M_z$$



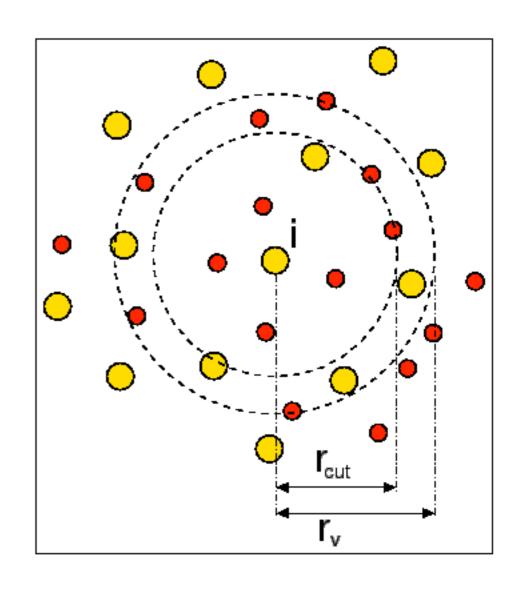
Algorithms to do efficient MD

Recap.

- What do we need to calculate?
 - bonded interactions: cheap
 - non-bonded interactions: expensive
 - maybe PME: expensive
 - integration: cheap

Calculating non-bonded interactions

- Using a Verlet list:
 - Make a "Verlet" pair list using radius: $r_{list} = r_c + r_{buf}$
 - Calculate interactions for n steps within cut-off r_c
 - When to update the list?
 - Option: when a particle moved more than r_{buf}/2
 - Becomes expensive for large systems



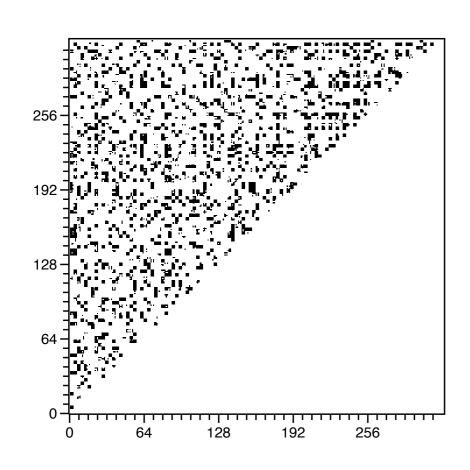
Charge groups

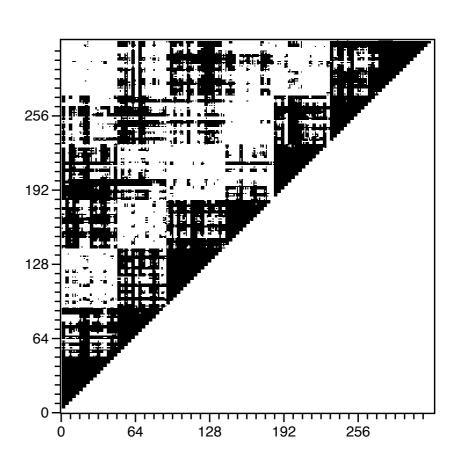
- In the early years of MD cut-offs were used: bad with cut-off electrostatics!
 - partial remedy: use neutral "charge groups"
 - e.g. group 3 atoms in water: only dipole

- Remnants of this still in the Gromacs package
 - often used without a Verlet list
 - bad for energy conservation
 - with thermostat fine for most purposes

Order of particles & interactions

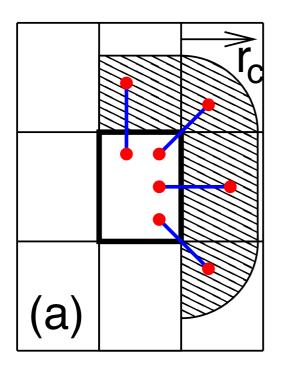
- Without particle ordering interactions are randomly distributed in memory: bad performance
- Sorting the particles on a grid groups interactions
 - good for performance & parallelization

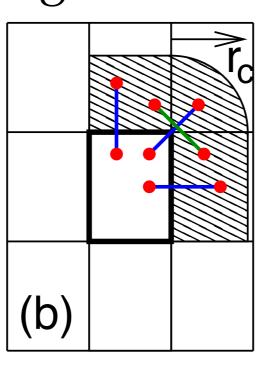


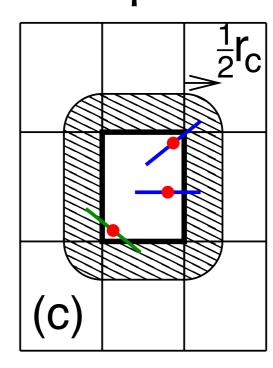


Parallel Molecular Dynamics

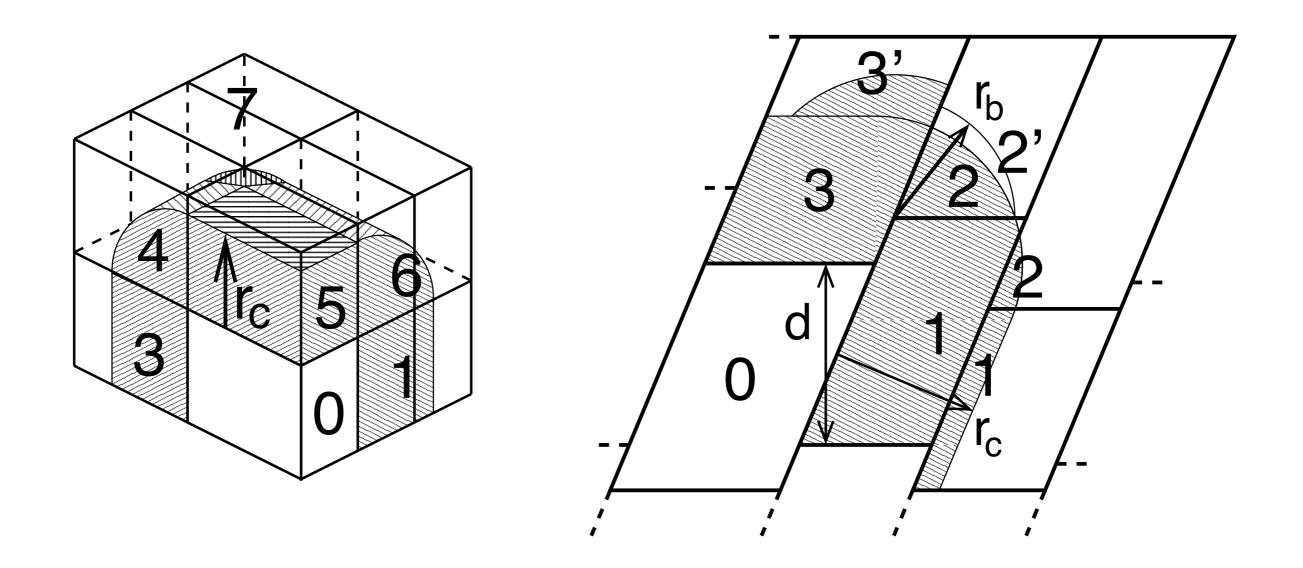
- Particle or force decomposition
 - bad memory access characteristics
- Spatial or domain decomposition
 - good memory access & communication half shell eighth shell midpoint







Domains & load balancing



- For inhomogeneous systems load balancing is required
- Gromacs has full 3D dynamic load balancing

Reading

Read Frenkel&Smit part V.F on saving CPU time

I will put an exercise on the site this afternoon

Next lecture: November 10, 10:00 at FB55

No lecture on November 15