Advanced Molecular Dynamics

Introduction

May 10, 2021

Who am I?

- I am a professor at Applied Physics
- Topics I work on:
 - Algorithms for (parallel) molecular simulations including GPU acceleration
 - Methods for (alchemical) free energy calculations
 - Enhanced sampling in protein simulations
 - Wettings (liquids at interfaces)
 - Topics I have worked on:
 - Parametrization of atomistic & coarse-grained models, in particular ions in solvent

Who are you?

Tell us:

- Your name
- Your university + department/group
- Your PhD project
- What you expect to get from this course

Molecular Dynamics

Given N particles, masses and a potential V

$$m_i \frac{d^2 \mathbf{x}_i}{dt^2} = -\nabla_i V(\mathbf{x}) \quad , \qquad i = 1, \dots, N$$

"It's just Newton's equation of motion"

- How to integrate
- Quality of V(x) determines (nearly) everthing
- How to choose $\mathbf{x}(0)$ (and $\mathbf{v}(0)$)
- Simulating long enough

Aspects of Molecular Dynamics

- How to integrate equations of motion
- How to set up a force field
- How to set up initial conditions
- How long should I simulate?
- What output should I write?
- How should I analyze the results?
- Are my simulations reliable?
- How to improve sampling
- How to develop efficient algorithms

Tentative course schedule

- Monday 10:
 - Introduction to the course,
 MD and general
 considerations
 - Force fields & integration
 - MD integrator exercise
- Tuesday 11:
 - Non-bonded interactions
 - Ensembles
 - Water exercise
- Wednesday 12:
 - Complex models

- Replica exchange (Mark Abraham)
- Replica exchange exercise
- Monday 17:
 - Sampling
 - Free-energy calculations
 - Free-energy exercise
- Tuesday 18:
 - Systematic course graining
 - Course graining exercise
 - Hybrid CPU/GPU acceleration (Szílard Páll)

Course project

Project for the last course week:

- Decide on a small project of a week
- Should apply an advanced MD technique
- Ideally fits into your PhD project
- You can use any MD code you want
- Mail me a report

Focus on different aspects of MD

- Theoretical Physicist focusses on:
 - focus on sampling methodology
- Biologist focusses on:
 - setting up simulations
 - analysis
- Who makes the tools?
 - efficient simulation & analysis code
 - accurate force fields

When (not) to do simulations

- Simulations are:
 - tedious to set up
 - require a lot of computational power
 - reliability of results?
- Simulations provide:
 - dynamics in full atomistic detail (x,t)
 - information on nearly anything
 - can easily change (initial) conditions

Types of systems studied with MD

- Quantum mechanics (not in this course):
 - Electronic structure, reactions
 - Metals (QM or embedded atom pot.)
- Classical, mainly pair-wise potentials:
 - Lennard-Jones solid/liquid/gas
 - Water (solid/liquid/gas)
 - Polymers (structure, phase transitions)
 - Bio-molecules: proteins, DNA, RNA

•

Experiments

- Thermodynamic measurements:
 - Phase diagrams, density, heat of vaporization, ...
- X-ray crystallography: atomistic detail, but static structures, very resource intensive
- Nuclear Magnetic Resonance: averaged atomistic detail, some averaged dynamics, very resource intensive, size limits
- Single molecule experiments: single molecule, but very few observables
- Cryo-electron microscopy: atomistic detail of large, static structures, small size limits

Measuring averages - an example

- Voltage-gated ion channel:
 - Voltage sensing through movement of charged 'paddle'.
- How to investigate this with simulation?
 - First need to check stability: is there a force on the open structure?
 - Calculate average force
 - What is the average?

Sampling a landscape

- 3N-dimensional space
- Native structure is the free energy minimum
- Ideally, we would sample all of phase space exhaustively
- In practice we have to make do with the most populated parts

Chaotic systems

Molecular dynamics is chaotic

Is it even possible to simulate?

- Try to track a single particle in the air:
 - Extremely small differences in initial position/velocity will lead to large deviations later

(Thermo) dynamics

$$m_i \frac{d^2 \mathbf{x}_i}{dt^2} = -\nabla_i V(\mathbf{x}) \quad , \qquad i = 1, \dots, N$$

- Molecular Dynamics
 - But we are often not interested in dynamics, but rather thermodynamics or statistical mechanics

$$\rho(\mathbf{x}) \sim \exp(-V(\mathbf{x})/k_B T)$$

Simulations

- Monte Carlo simulation (later)
 - No time dependence
 - Requires intelligent moves
- Newton's equations of motion
 - Time dependence
 - Dynamical events
- Stochastic / Brownian dynamics
 - Add noise to forces

Molecular dynamics

- Try to calculate paths / trajectories of individual particles
- We know there are errors in these
- But if the errors do not systematically add up, the averages should still be OK (note: this is a very complex issue)
- How do we calculate motion?

Newton's equations

Leap-Frog integrator

 From the acceleration we can calculate how the velocity of the atom is changing:

$$v_i(t + \frac{\Delta t}{2}) = v_i(t - \frac{\Delta t}{2}) + a_i(t)\Delta t$$

 From the velocity, we can calculate new coordinates for the atom:

$$x_i(t + \Delta t) = x(t) + v_i(t + \frac{\Delta t}{2})\Delta t$$

What is a trajectory?

- NOT an accurate prediction of the motion of an individual particle
- Molecular dynamics is a chaotic process differences grow exponentially
- But trajectories aren't random either?
- Shadow trajectory: Simulated path stays close to (some) real path for shorter times

Taking a time step

Proteins

Example of motion in a chain

Time scales, again

where we are

where we need to be

where we want to be

Example system

33 residues ~750 atoms

The Villin headpiece

Add water & ions: ~10000 atoms

MD programs

- GROMACS, Amber, Charmm, NAMD, LAMMPS, AceMD, ...
- Programs used to be intimately tied to a force field (Amber, Charmm, OPLS)
- Most of these are freely available to academia
- GROMACS is written by us

A typical protein simulation

- Get a structure (usually from PDB)
- Fix missing segments, sidechains, determine protonation states, etc.
- Prepare a topology (parameters)
- Add solvent water
- Energy minimization
- Equilibration simulation
- Run production simulation
- Analyze the output trajectory data

How to accelerate MD

- Take bigger time steps
- Use less particles
- Simulate in parallel
- Use accelerator hardware
- Coarse-graining

Competences involved

- Physics
- Chemistry
- Biology
- Mathematics (numerical analysis)
- Computer science

Exercise 1: integrators

Euler integrator:

•
$$x_{i+1} = x_i + dt * v_i$$

•
$$v_{i+1} = v_i + dt/m * f(x_i)$$

Velocity Verlet integrator:

•
$$x_{i+1} = x_i + dt * v_i + dt*dt/(2m) * f(x_i)$$

•
$$v_{i+1} = v_i + dt/(2m) * (f(x_i) + f(x_{i+1}))$$

Leap frog

•
$$v_{i+1/2} = v_{i-1/2} + dt/m * f(x_i)$$

•
$$x_{i+1} = x_i + dt * v(i+1/2)$$

Exercise 1 ctnd

- Take a 1-dimensional system
- Use a harmonic potential: $V(x) = k/2 x^2$
- Choose parameters m and k
- Implement the 3 integrators
- Choose initial conditions
- Try a range of values for dt, how does this affect the stability of the 3 integrators, when do things go wrong?
- Determine the average potential and kinetic energy (1/2 m v²) and compare Epot and Ekin

Exercise 1 cntd

- Determine the average potential and kinetic energy (1/2 m v²) for the velocity Verlet and Leap-Frog integrators and compare Epot with Ekin.
- The comparison will give different results for VV and LF, especially for larger time steps. Can you explain the difference, knowing that v_i = (v_(i-1/2) + v_(i+1/2))/2, as can be found in Frenkel&Smit?