
Lecture 8:
Behavior Trees and Task Switching
by Petter Ögren

Content
• When to use Behavior Trees (BTs)?

– Creating complex controllers/policies

• What are BTs?
– Hierarchically modular policies

• How to create BTs?
– Improvise
– Use planning (backward chaining)

• The Big Picture
– Genetic Algorithms
– Reinforcement Learning
– Control Theory (Performance Guarantees)

Behavior trees
in use

2021-09-19 3

What to do next?
(any autonomous systems needs to answer this question)

2021-09-19 4

Grasp

Drop

Walk

Open

Close

Search

Clean

Listen

Run

Recharge

Lock

Unlock

Pull

Push

Kick

Speak

Idle

Throw

What to do next?

2021-09-19 5

Grasp

Drop

WalkOpen

Close Search

Clean

Speak

Recharge Lock

Unlock

Pull

Push

Kick

Speak

RecordFinite State Machine

Each action needs to know “What to do next”…

Can you spot the Bug?

Can be
expanded

…

What to do next?

2021-09-19 7

Behavior Tree

Each action needs to know
“Did I Succeed or Fail?”

Grasp

Drop

Walk

Open

Close

Search

Clean

Speak

Run

Recharge

Lock

Unlock

Pull

Push

Kick

Speak

Record

Throw

Grasp

(parent)

(tick)
Success,
Failure,
or Running

Ancestors decide “What do to next?”

Two Fundamental Compositions of Actions

2021-09-19 8

• Fallback (?)(or)
– (Eat Sandwitch ? Eat Apple)

• Sequence (à)(and)
– (Peel Banana à Eat Banana)

Peel
Banana

Eat
Banana

Eat
Sandwich

Eat
Apple

?

à

IF Success then Tick Next
else Return “same as child”

IF Failure then Tick Next
else Return “same as child”

•Tick (going down)
•Success (up)
•Running (up)
•Failure (up)

Example

Execution without disturbances
•Success
•Running
•Failure

• Classical Control handles noise disturbances
• Behavior Tree handles events disturbances

Handling disturbances

2021-09-19 11

•Success
•Running
•Failure

Properties of Behavior Trees :

12

• Modularity
– Few dependencies between components (Important for large systems)
– Optimally modular [1]

• Hierarchical structure
– Actions exist on many levels of detail (Get tea – opening door – grasp handle – move arm)

– Hierarchical modularity

• Equally expressive as FSMs [2] (with internal variables)

– choice a matter of taste (as programming languages)

• BTs generalize [3]
– Subsumption Architecture
– Teleo-Reactive Approach
– Decision Trees

If-then-else constructs

• How to do
If-then-else?

• If True…

à

Pass Through
Door

Open
Door

?

Door
Open

à

Action (If True)

Action (If False)

?

Condition

à

Action (If True)

Action (If False)

?

Condition

• If False …

Design BT using Planning (Backward Chaining)

14

• Backward Chaining
– Solving an AI Planning Problem by working backwards from the goal

• Example:
– Goal: Leave the room
– To leave I need to pass through the door
– To pass the door I need to open the door
– To open the door I need to grasp the handle
– To grasp the handle I need to extend my arm
– Plan:

> Extend arm
> Grasp handle
> Open door
> Pass through the door

BTs can do this reactively…

A BT that achieves a single goal
(using feedback)

Open door
with key

à

?

Door is open

Brake door
open

à

Thin
Door

Has
CrowbarHas Key

Ask Person to
open door

à

Person
Nearby

Pre-conditions of Actions

Post-condition of Actions

These can be
combined recursively…

Backward chaining:
starting with 2 goal conditions

Wear Jacket

à

?

Not Freezing

à

Not
Hungry

Not
Freezing

?Has Warm
Jacket Go Inside

à

?Door Open

Find BTs that achieve each

Eat Apple

à

?

Not Hungry

?Has
Apple

Eat Banana

à

?Has
Banana

Replace condition (with Sequence parent)

with new subtree

Wear Jacket

à

?

Not Freezing

à

Not
Hungry

Not
Freezing

?Has Warm
Jacket Go Inside

à

?Door Open

Iterate this…

Eat Apple

à

?

Not Hungry

?Has
Apple

Eat Banana

à

?Has
Banana

Replace conditions…

Wear Jacket

à

?

Not Freezing

à

?Has Warm
Jacket Go Inside

à

Door Open Eat Apple

à

?

Not Hungry

?Has
Apple Eat Banana

à

?Has
Banana

Open door
with key

à

?

Door is open

Brake door
open

à

Thin
Door

Has
Crowbar

Search
Garden

?

Has Key

Search under door mat

à

Door mat
is removed

Ask Person to
open door

à

Person
Nearby

And so on…

Execution example

Wear Jacket

à

?

Not Freezing

à

?Has Warm
Jacket Go Inside

à

Eat Apple

à

?

Not Hungry

?Has
Apple Eat Banana

à

?Has
Banana

Open door
with key

à

?

Door is open

Brake door
open

à

Thin
Door

Has
Crowbar

Search
Garden

?

Has Key

Search under door mat

à

Door mat
is removed

Ask Person to
open door

à

Person
Nearby

Execution example

Wear Jacket

à

?

Not Freezing

à

?Has Warm
Jacket Go Inside

à

Eat Apple

à

?

Not Hungry

?Has
Apple Eat Banana

à

?Has
Banana

Open door
with key

à

?

Door is open

Brake door
open

à

Thin
Door

Has
Crowbar

Search
Garden

?

Has Key

Search under door mat

à

Door mat
is removed

Ask Person to
open door

à

Person
Nearby

When does this fail?

Turn light on

?

Camera sees
burglar

à

?

Burglar cannot
see camera

Turn light off

Conflict: Action brakes already satisfied
Objective

Turn light on

?

Camera sees
burglar

à

?

Burglar cannot
see camera

Turn light off Hide Camera

Solution: Avoid braking already achieved goals (if possible)

Key idea:
Replace conditions with BT
that achieve them!

Wear Jacket

à

?

Not Freezing

à

Not
Hungry

Not
Freezing

?Has Warm
Jacket Go Inside

à

?Door Open Eat Apple

à

?

Not Hungry

?Has
Apple

Eat Banana

à

?Has
Banana

Minecraft AI

19/09/2021 23

Sometimes we can simplify Backward Chaining
(Implicit Sequences)

• Only 2 levels

• Works if
• Action satisfies

Condition to Left

• Loose some
structure…

Unlock
Door

?

Door
Unlocked

?

Agent Has
Passed

?

Door
Open

Unlock
Door

à

Door
Unlocked

Pass Through
Door

Agent Has
Passed

Open
Door

?

Door
Open

à à

Has Key

à

Pass Through
Door

Open
Door

à

Decision Tree Principle à Divide and Conquer

• Can Behavior
be divided into
Cases? (and
sub-cases)

• Think “Decision
Tree”

• Use If-then-
else…

Eat Pills

Ghost
Close

?

à

Avoid
Ghost

Ghost
Scared

?

à

Chase
Ghost

Eat Pills

Ghost Close

Avoid
Ghost

Chase
Ghost

Ghost Scared

yes no

Sequences à Improve Safety

• BTs enable Safety-
Guarantees using
the following
construction...

• If-not-then-else…

• Special case of
Backward Chaining

Do Other
Stuff

Altitude
> 1000ft

?

à

Pull Up

The Big Picture

LearningBehavior
Trees

Control
Theory

Genetic
Algorithms

AI
Planning

The Big Picture
Behavior
Trees

Genetic
Algorithms

Learning from Experience
• Apply Genetic Programming
• BT trivially maps to Genes
• Mutation/Crossover easy

—> —>

?

a cb

d e

—>

?

f

—> —>

?

a cb

d e

—>

?

f1 f2

—>Mutation

—> —>

?

a cb

d e

—>

?

h i j

g ?

—>

f

—> —>

?

a c?

d e

—>

?

h i j

g b

—>

f

CrossoverCrossover

Copy

Copy

The Big Picture
Behavior
Trees

Genetic
Algorithms

?

Enemy in
Cell 14

—>

Shoot

Obstacle
in Cell 8

Obstacle
in Cell 12

—>

? Jump

Not Ob‐
stacle in
Cell 16

—>

Move right

Not Ob‐
stacle in
Cell 17

The Big Picture

• Use CNN for Conditions
(image processing)

• Use RL for Actions

LearningBehavior
Trees

RL Action
CNN

Condition

?

-->

Have Task To
Do?

Recharge
Now!

?

-->

Task is
Urgent? ?

-->

Battery Level
> 10% ?

Perform
Task!

Recharge
Now!

?

-->

Battery Level
> 30% ?

Perform
Task!

Recharge
Now!

The Big Picture
Behavior
Trees

Control
Theory

Example: Avoiding Empty
Batteries

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x1 [m]

x 2 [%
]

Guarantee
Power Supply

-->

Battery Level
> 20 %
and Not

Recharging

Recharge
Battery

? Do Other
Task

Pos
Battery

level

Avoiding Empty Batteries

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x1 [m]

x 2 [%
]

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x1 [m]

x 2 [%
]

Guarantee
Power Supply

-->

Battery Level
> 20 %
and Not

Recharging

Recharge
Battery

? Do Other
Task

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x1 [m]

x 2 [%
]

The Big Picture

• Can we give
Performance
Guarantees?
• Stability/Convergence?

Behavior
Trees

Control
Theory

What are Performance Guarantees?

2021-09-19 35

Can we guarantee Mission Accomplishment:
InSafeArea AND ObjectAtGoal AND AtCharger?

2021-09-19 36

?

?

Robot near
Object —>

?

Free path to
Object exists

Move to Ob‐
ject

Robot near
Object

Object in
Gripper —>

Grasp Object

< 0.5m to
Goal —>

?

Free path to
Goal exists Move to Goal

Object at
Goal —>

Object in
Gripper

< 0.5m to
Goal

Place Object
at Goal

In Safe Area

—>

Object at
Goal

?

In Safe Area —>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $

—>

Pay Agent to
Place Object

Agent
Nearby

Robot has $ —>

?

Payed Task
Available

Do Task and
Earn $

Backward Chained
Behavior Tree

2021-09-19 37

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

?

?

Robot near
Object —>

?

Free path to
Object exists

Move to Ob‐
ject

Robot near
Object

Object in
Gripper —>

Grasp Object

< 0.5m to
Goal —>

?

Free path to
Goal exists Move to Goal

Object at
Goal —>

Object in
Gripper

< 0.5m to
Goal

Place Object
at Goal

In Safe Area

—>

Object at
Goal

?

In Safe Area —>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $

—>

Pay Agent to
Place Object

Agent
Nearby

Robot has $ —>

?

Payed Task
Available

Do Task and
Earn $

Backward Chained
Behavior Tree

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe Area

• Action does not violate conditions needed
for later actions
– Move to Object does not destroy passage to

goal area (Free path to object exists)

• Action does not invoke previously failed
subtree
– Explained later…

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near

Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe Area

• Action does not violate conditions needed
for later actions
– Move to Object does not destroy passage to

goal area (Free path to object exists)

• Action does not invoke previously failed
subtree
– Explained later…

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe

Area

• Action does not violate conditions needed
for later actions
– Move to Object does not destroy passage to

goal area (Free path to object exists)

• Action does not invoke previously failed
subtree
– Explained later…

Preserve (some) earlier subgoals

2021-09-19 41

• “The actions satisfy their postconditions, without violating important achieved subgoals (ACCs)”

• How can we make this happen?

• Examples
• Move to Object

• plans a path that avoids “Unsafe area”
• Move to Goal

• plans a path that avoids “Unsafe area”
• moves slowly to keep “Object in Gripper”

• ACCs can thus be “Obstacles” in
• Configuration space
• Velocity/acceleration space

• Assumption gives explicit “Design specifications” for Controllers/Actions

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to
Object

< 0.5m
to Goal

—>

? Place Object
at Goal

Free path
to Goal
exists

Move to
Goal

Grasp
Object

In Safe
Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to
Safe Area

Robot
has $ —>

?

—>

Payed Task
Available

Do Task
and Earn $

Pay Agent to
Place Object

Agent
Nearby

?

At
Charger

—>

Free path to
Charger exists

Move to
Charger

Which subgoals to Preserve?

2021-09-20 42

• Two ways to find the subgoals to preserve
– During execution find non-preconditions returning

Success
– Analytically study BT to find the above

> Check Sequence nodes in the BT between Action and Root

> Look for older children of those nodes to the left

> Pre-conditions of the action can be violated at the instant of
achieving the postcondition

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe Area

• Action does not violate conditions
needed for later actions
– Move to Object does not destroy passage

to goal area (Free path to object exists)

• Action does not invoke previously failed
subtree
– Explained later…

The region of attraction of the BT

2021-09-19 44

AND

OR OR

Robot near
Object

Object in
Gripper

OR

Free path to
Object exists

OR

Free path to
Goal exists

In Safe Area

AND

AND

Object at
Goal

Free path to
Safe Area exists

< 0.5m to
Goal

OR

Payed Task
Available

Robot has $

Agent
Nearby

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Create And-Or-Tree
– Remove Actions
– à becomes AND
– ? becomes OR

Shows what kind of
disturbances can
be handled

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe Area

• Action does not violate conditions needed
for later actions
– Move to Object does not destroy passage to

goal area (Free path to object exists)

• Action does not invoke previously
failed subtree
– Explained now…

?

Lamp 1 OK

Room is not
dark —>

Turn Lamp 1
ON

Robot near
Lamp 1

?

Move to
Lamp 1

Lamp 2 OK

—>

Turn Lamp 2
ON

Robot near
Lamp 2

?

Move to
Lamp 2

OR

Lamp 1 OK

Room is not
dark AND

Robot near
Lamp 1

OR

True

Lamp 2 OK

AND

Robot near
Lamp 2

OR

True

True True

?

Lamp 1 OK

Room is not
dark —>

Turn Lamp 1
ON

Robot near
Lamp 1

?

Move to
Lamp 1

Lamp 2 OK

—>

Turn Lamp 2
ON

Robot near
Lamp 2

?

Move to
Lamp 2

OR

Lamp 1 OK

Room is not
dark AND

Robot near
Lamp 1

OR

True

Lamp 2 OK

AND

Robot near
Lamp 2

OR

True

True True

Example: Turn the light on

2021-09-20 47

• If Lamp 1 is broken, the policy will still try to move to Lamp 1…

• Solution:
– Swap order of Fallbacks (so Lamp 2 is first option after initial fail)
– Add precondition to deactivate first subtree

• When?
– Use AndOr-tree
– Count # fails

1 2

Extra
Precond

Avoid starting a sub-plan that is doomed to fail

Four Design Specifications for the guarantees to hold

—>

? ?

Robot near
Object —>

?

Object in
Gripper —>

?

Free path to
Object exists

Move to Ob‐
ject

< 0.5m to
Goal —>

? Place Object
at Goal

Free path to
Goal exists Move to GoalGrasp Object

In Safe Area

—>

Object at
Goal—>

Free path to
Safe Area exists

Move to Safe
Area

Robot has $ —>

?

—>

Payed Task
Available

Do Task and
Earn $

Pay Agent to
Place Object

Agent
Nearby

• Action achieves Post-condition in finite
time
– Move to Object satisfies Robot near Object

• Action does not violate key previously
achieved subgoals
– Move to Object does not violate In Safe Area

• Action does not violate conditions needed
for later actions
– Move to Object does not destroy passage to

goal area (Free path to object exists)

• Action does not invoke previously
failed subtree
– Explained now…

Content
• When to use Behavior Trees (BTs)?

– Creating complex controllers/policies

• What are BTs?
– Hierarchically modular policies

• How to create BTs?
– Improvise
– Use planning (backward chaining)

• The Big Picture
– Genetic Algorithms
– Reinforcement Learning
– Control Theory (Performance Guarantees)

References

50

• [1] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "On modularity in
reactive control architectures, with an application to formal verification." arXiv
preprint arXiv:2008.12515 (2020).

• [2] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "An expressiveness
hierarchy of Behavior Trees and related architectures." IEEE Robotics and
Automation Letters 6.3 (2021): 5397-5404.

• [3] Colledanchise, Michele, and Petter Ögren. "How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees." IEEE Transactions on
robotics 33.2 (2016): 372-389.

Questions

2021-09-19 51

