KTH ROYAL INSTITUTE

OF TECHNOLOGY

Lecture 8:
Behavior Trees and Task Switching

by Petter Ogren

1]

T | v

Content

When to use Behavior Trees (BTs)?
— Creating complex controllers/policies

What are BTs?

— Hierarchically modular policies

How to create BTs?

— Improvise

— Use planning (backward chaining)
The Big Picture

— Genetic Algorithms
— Reinforcement Learning

— Control Theory (Performance Guarantees)

@ .
51 Behavior trees

» Concepts » Autonomy » Mission Service

% VETENSKAP %

<8 OCH KONST 2%

“ZS In use

MISSION SERVICE

The Mission Service is a way for API clients to specify high level autonomous behaviors for Spot

© Concepts using behavior trees.
About Spot 5
e Behavior trees
Base services Behavior trees allow clients to speci
» Behavior Tre

Q@ Previous Next ©
<@
NVIDIA. Behavior Trees

Behavior tree codelets are one of the primary mechanisms to control the flow of tasks in Isaac SDK.

They follow the same general behavior as classical behavior trees, with some useful additions for
robotics applications. This document gives an overview of the general concept, the available
behavior tree node types, and some examples of how to use them individually or in conjunction
with each other.

20211
General Concept @ P
Do o) Folrans Dog CUDA Q unity »?' O PyTorch
: pen
©) GitHub - jstyrud/WASP-CBSS-BT (0 Behavior Trees — ISAAC 20211 docu... [B Black Women are Ranked the Most E. @ writin) *g . x s DeepStream Ly = Trans_fer
s |—_. Learnin
— § docker °** ROS Phys susstance DK P ok
Navigation 2
» Plugin Tutorials » Writing a New Behavior Tree Plugin ? ? ? ? ?

Apps

Writing a New Behavior Tree Plugin ISAAC
e Overview

 Requirements ‘ ‘ * ‘ *

e Tutorial Steps Edge: NVIDIA Jetson ’ Workstation: GTX, Quadro, DGX

B &y R
This tutorial shows how to create you own behavior tree (BT) plugin. The BT plugi -

by the BT Navigator for navigation logic. — 3

What to do next?

(any autonomous systems needs to answer this question)

Grasp Recharge
Drop Lock
Walk Unlock
Open Pull
Close Push

Search Kick
Clean Speak

Listen |dle
Run Throw

2021-09-19

Recharge Lock

Grasp Speak Unlock

Pull

Open Walk Push

Kick

Drop Close Search Speak

Finite State Machine Clean Recard

Each action needs to know “What to do next”...

2021-09-19

b,
Fxr Can you spot the Bug?

% VETENSKAP éi}

<8 OCH KONST 2%

IR

team has the puck

opponent has

opponent has

patrol
the puck

‘Kf Can be
puck is too eXpanded
far away team/ has
away the /puck
in from

position position

team has
the puck

close to
opponent leader
/"\}
defend || stealPuck

too far from
opponent leader

puck has
no owner

puck has

no owner puck has

no owner

puck is
close opponent
has the

puck

pursuePuck

(parent)

(tick)

A

Success,
Failure,
or Running

Grasp

Behavior Tree

Each action needs to know
“Did | Succeed or Fail?”

Ancestors decide “What do to next?”

Grasp Recharge
Drop Lock
Walk Unlock
Open Pull
Close Push

Search Kick
Clean Speak
Speak Record

Run Throw

2021-09-19

Two Fundamental Compositions of Actions

» Fallback (?)(or) « Sequence (=2)(and)
— (Eat Sandwitch ? Eat Apple) — (Peel Banana - Eat Banana)
|F Failure then Tick Next IF Success then Tick Next
else Return “same as child” else Return “same as child”
i)
4

4 +Tick (going down)
T -Success (up)
190 t‘ﬁ-Running (up)
Banana Banana *Failure (up)

2021-09-19 8

oy

Nk
ZKTHY

% VETENSKAP
<8 OCH KONST 2%

o

- |Move to Object

| -.. while satisfying (ACC):
-In Safe Area

Success
*Running
*Failure

Classical Control handles noise disturbances
Behavior Tree handles events disturbances

Success
*Running
*Failure

Move to Safe Area
... while satisfying (ACC):

2021-09-19 11

Properties of Behavior Trees :

Modularity
— Few dependencies between components (Important for large systems)
— Optimally modular [1]

Hierarchical structure

— Actions exist on many levels of detail (Get tea — opening door — grasp handle — move arm)
— Hierarchical modularity

Equally expressive as FSMs [2] (with internal variables)

— choice a matter of taste (as programming languages)

BTs generalize [3]

— Subsumption Architecture
— Teleo-Reactive Approach
— Decision Trees

12

If-then-else constructs

 How to do
If-then-else?

« If True... .

Design BT using Planning (Backward Chaining)

« Backward Chaining
— Solving an Al Planning Problem by working backwards from the goal

« Example:

— Goal: Leave the room

— To leave | need to pass through the door

— To pass the door | need to open the door

— To open the door | need to grasp the handle
— To grasp the handle | need to extend my arm

- Plan:
> Extend arm

Grasp handle BTs can do this reactively...
Open door

\"4

\"4

\"4

Pass through the door

A BT that achieves a single goal
(using feedback)

Post-condition of Actions

Door is open

Has " Brake door |
Crowbar

W These can be

Pre-conditions of Actions combined recursively...

Backward chaining:
starting with 2 goal conditions

Freezing

? ?
> x4 N >
Has Warm Has Has
Door Open
Jacket Apple Banana

Find BTs that achieve each

Replace Condition (with Sequence parent)

. >
with new subtree
Not Not
Freezing Hungry
? ?
> 2 >
Has Warm Door Open Has Has
Jacket Apple Banana

Iterate this...

Replace conditions...

Has Warm
. Jacket

ST]

Banana

And so on...

C ity S
Door mat
1s removed

Execution example

il

|
>

Has Warm
24¢

Door is open

Not Freezing

Banana

l

Person
Nearby

Door mat
1s removed

Execution example

il

|
>

Has Warm
24€

Door is open

Not Freezing

Banana

l

Person
Nearby

Door mat
1s removed

When does this fail?

Conflict: Action brakes already satisfied
Objective

Solution: Avoid braking already achieved goals (if possible)

Key idea:
Replace conditions with BT
that achieve them!

Freezing
? ?
> x4 N >
Has Warm Has Has

Door Open
Jacket : Apple Banana

% VETENSKAP &}

28 OCH KONST %%

Qﬁ@& . | j'llll
1921 Minecraft Al | '

Mt

Loading world - .

Building tertain

19/09/2021

Sometimes we can simplify Backward Chaining
(Implicit Sequences)

* Only 2 levels

« Works if

 Action satisfies
Condition to Left

» Loose some
structure...

Can Behavior

be divided into
Cases? (and
sub-cases)

Think “Decision
Tree”

Use If-then-
else...

Sequences - Improve Safety

« BTs enable Safety-
Guarantees using
the following
construction...

* [f-not-then-else...

« Special case of
Backward Chaining

(-

The Big Picture

s
Planning

5

Learning

5

Control D Behavior
Theory Trees

>

5 5

(-
TS [R5 S

Genetic
Algorithms

(-

The Big Picture 5
| 7) s 1)

/ \
. oJo)n
Mutation —— > —> Genetic
@ @ Algorithms
d 2

5

Learning from Experience

* Apply Genetic Programming
« BT trivially maps to Genes

» Mutation/Crossover easy

v

Enemy in
Cell 14

The Big Picture

?

7

3

5

Behavior
Trees

N

O

Genetic
Algorithms

—> —> Move right
/ Receptive field
Shoot ? Jump
0f142]3
N\
of7 |8
11{12113}14
Obstacle Obstacle R
in Cell 8 in Cell 12 20(2112212324

Not Ob-
stacle in
Cell 16

Not Ob-
stacle in
Cell 17

5

The Big Picture

Use CNN for Conditions
(image processing)

Use RL for Actions

9

5

S |

Behavior EO Learning
Trees

CNN
Condition

5

The Big Picture S | O

Control D Behavior
Trees

0| —
Heater Off
11 2 us(x):=—-1 |4

\ ra(x) =%

, Heater On
ry(x) := {; 1€x = w3(x):=1 |3
= r3(x) =%

—>—>—>>>>>>—+—<—<—<<<< > X
€ Qy

x € Q3 x
T

x=up(x) =u3z(x) =1 x=up(x) =us(x) =—1

@ P

o R

{xTHy Example: Avoiding Empty A
Batteries Lay

<

Mt

-~ 100f !
90 T
/ 80t T
Guarantee ol i
Power Supply i
0 Do Other 60
' Task 7 T
=, 950r
\ wf |
Battery Level 30} T
>20 % Recharge 1
and Not Battery 20 | — — — —
Recharging 1ol T
I‘—_“——‘——‘—_“——‘——_‘—;__‘_—:_f’—’—r’
of homroeezzr 2’ 2
0 20 40 m 60 80 100
X, [m
Battery 1

level Pos

oy

o R

jxmig Avoiding Empty Batteries

<8 OCH KONST 2%

ed® 00f —= —= — o~ o~ e e
90F — — — ~ - s = = e =
80f — — — — -~ - = = e =
70 — — — = - . s = = e =

- B0 = — o~ =~ s s e
S
—_— 50 |-
><(\l
40+
Guarantee 301
Power Supply sl
5 Do Other
' Task 10+
\\\ S or
Battery Level
>20 % Recharge
and Not Battery 100}
Recharging %0l
T ‘ ‘ ‘ ‘ ‘ 80F
100 i
ool ! i 70+
80 : - 60}
mf% =, 50+
60 4%
g ! 40
“a 50 4
© a0l ? , 301
30+ ; 4 20t
20 t kkkkkkkkkk 1 10+
W | =— = = = = = =~ =— =~
oF L;:-—:_:‘;_i’;::» kkkkkk B o
0 20 80 100

oy

L,
ZKTHY

% VETENSKAP g\}
28 OCH KONST %%
0 o

TR

The Big Picture

« Can we give
Performance
Guarantees?

« Stability/Convergence?

Behavior
Trees

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

6073

Convergence Analysis of Hybrid Control Systems in
the Form of Backward Chained Behavior Trees

Petter Ogren

Abstract—A robot control system is often composed of a set of
low level continuous controllers and a switching policy that decides
which of those continuous controllers to apply at each time instant.
The switching policy can be either a Finite State Machine (FSM), a
Behavior Tree (BT) or some other structure. In previous work we
have shown how to create BTs using a backward chained approach
that results in a reactive goal directed policy. This policy can be
thought of as providing disturbance rejection at the task level in the
sense that if a disturbance changes the state in such a way that the
currently running continuous controller cannot handleit, the policy
will switch to the appropriate continuous controller. In this letter
we show how to provide convergence guarantees for such policies.

Index Te Behavior-based
archi es and progr i

, robot safety, control

1. INTRODUCTION

EHAVIOR Trees (BTs) were created by computer game

programmers as a way to improve modularity and reactiv-
ity in the control policies of so-called Non-Player Characters
(NPCs) in games [1]. Since then, BTs have been receiving
an increasing amount of attention in Robotics [2]-{9]. The
reason is that robotics share many high level planning and
control problems with game Al, while at the same time, the low

Place Object
at Goal

Move to Goal

Robot near

Free path
exists
Object
ject

Fig.1. ABTincluding the four actions Move to Object, Grasp Object, Move to
Goal, Place Object at Goal, designed in a way to provide disturbance rejection
at the task level. An extended version, including additional objectives and

altarnativa wave ta achiava cnhanale ran ha fannd in Fia &

What are Performance Guarantees?

(none)
... while satisfying (ACC):
-In Safe Area

Can we guarantee Mission Accomplishment:
InSafeArea AND ObjectAtGoal AND AtCharger?

2021-09-19

35

m Object at

L, In Safe Area Goal
FKTHY .-
SN
Mot K
.
In Safe Area —> "
.
.
Free path to Move to S R !
Safe Area exists Ar 7
?
Object at _ s
Goal
Obiject in <0.5mto Place Object Agent Pay Agent to
Gripper Goal at Goal Nearby Robot has $ Place Object
- R
. M -

?

/
\
Robot has $
Payed Task
Available

Object in
Gripper

Do Task and
Earn $

Robot near
Object

Grasp Object Move to Goal

Free path to
Goal exists

Backward Chained

H Free path to Move to Ob-
Behavior Tree i

oy

L,
ZKTHY

% VETENSKAP &}
28 OCH KONST %%

Mt

In Safe Area —>

Move to Safe

Cas
€I EEICDI
1 1
GO ED)EIECD)=
oD o] @ fomvie] Gt iz
CGOR
G =]

Backward Chained

Behavior Tree

Area

Object in

Gripper

Robot near

Object

Free path to
Object exists

Free path to
Goal exists

Move to Ob-
ject

RN

S

Place Object
at Goal

Agent
Nearby

Move to Goal

—_>

/

?

Payed Task
Available

Pay Agent to
Place Object

Earn $

Do Task and

oy

Qﬁé?“/“‘\‘%&;a u n]]
S Four DeS|gn SpeCIflcathnS for the guarantees to hold
Bt

 Action achieves Post-condition in finite
time - .
— Move to Object satisfies Robot near Object —

« Action does not violate key previously AN o ;
achieved subgoals Safo Areh Area
— Move to Object does not violate In Safe Area Place Object o e

« Action does not violate conditions needed uecin
-2

Gripper

Robot has $ —>

for later actions ST AN T
— Move to Object does not destroy passage to Gra%biect Movetoé;f;'_ gams

goal area (Free path to object exists)
« Action does not invoke previously failed Cbiect ‘ /‘

S U btree Free path to Move to Ob-
Object exists ject

— Explained later...

oy

L,
ZKTHY

vyl Four Design Specifications for the guarantees to hold

<8 OCH KONST 2%

et

* Action achieves Post-condition in finite
time

— Move to Object satisfies Robot near
Object

Move to Safe
Area

» Action does not violate key previously
achieved subgoals

— Move to Object does not violate In Safe Area

Pay Agent to
Place Object

Place Object
at Goal

Robot has $

* Action does not violate conditions needed

for later actions

Do Task and
Earn $

ath to

Goal & Move to Goal

? Grasp Object

Payed Task
Available

— Move to Object does not destroy passage to
goal area (Free path to object exists) Robot near T

Object

» Action does not invoke previously failed
subtree

— Explained later...

Free path to
Object exists

Move to Ob-
ject

oy

B,
FKTHS

% VETENSKAP SZ}

O H KONST 9%

%%?

* Action achieves Post-condition in finite
time

— Move to Object satisfies Robot near Object

« Action does not violate key previously
achieved subgoals

Move to Safe
Area

— Move to Object does not violate In Safe
Area

* Action does not violate conditions needed

for later actions

— Move to Object does not destroy passage to
goal area (Free path to object exists)

Robot near
Object

at Goal

Place Object

Free path to
Goal exists

» Action does not invoke previously failed
subtree

Free path to
Object exists

Move to Ob-

ject

— Explained later...

Move to Goal

Four Design Specifications for the guarantees to hold

Pay Agent to
Place Object

Payed Task
Available

Do Task and
Earn $

oy

o R

231 Preserve (some) earlier subgoals

Mt

« “The actions satisfy their postconditions, without violating important achieved subgoals (ACCs)”

 How can we make this happen? l l
« Examples
. Actions A; P, nditions of | Acti Constrain
b Move tO ObJeCt etions A?S(t(c)?)jectisess)o Cg%iions(i&étéa(i)t
. “ ” Move to Saf.e Area In Safe Area -
« plans a path that avoids “Unsafe area —>[Move to Object___| Near Object In Safe Area
Grasp Object Object Grasped In Safe Area
° Move to Goal ——»| Move to Goal Near Goal glbjseiftei ﬁré?ip?};])
. “ . Place Object Object at Goal In Safe Area
* p/anS a path that avoids “Unsafe area Do Task and Earn $§ | Robot has $ In Safe Area AND
Agent Nearb
« moves slowly to keep “Object in Gripper” By Bueac & Pies || Chset o In Safe Area

« ACCs can thus be “Obstacles” in

« Configuration space
» Velocity/acceleration space

« Assumption gives explicit “Design specifications” for Controllers/Actions

2021-09-19 41

oy

B,
FKTHS

% VETENSKAP é}
28 OCH KONST &
0 o

w%xﬁb

« Two ways to find the subgoals to preserve

Which subgoals to Preserve?

During execution find non-preconditions returning

S

\

Success At
— Analytically study BT to find the above Area Goal Charger

> Check Sequence nodes in the BT between Action and Root

Free path to Move to
Safe Area exists Safe Area

Place Object

> Look for older children of those nodes to the left

> Pre-conditions of the action can be violated at the instant of P
achieving the postcondition '

at Goal

Actions A; Postconditions of | Active Constraint
A; (Objectives) Conditions ACC(i)
Move to Safe Area In Safe Area -
Move to Object Near Object In Safe Area
Grasp Object Object Grasped In Safe Area
— Move to Goal Near Goal In Safe Area AND
Object in Gripper
Place Object Object at Goal In Safe Area
Do Task and Earn $ | Robot has $ In Safe Area AND
Agent Nearby
Pay Agent to Place | Object at Goal In Safe Area
Object
Free path to
Object exist
2021-09-20 42

oy

By

1541 Four Design Specifications for the guarantees to hold

28 OCH KONST %%

oeed®

* Action achieves Post-condition in finite
time

— Move to Object satisfies Robot near Object

In Safe Area

. Acti_on does not violate key previously R
aChleved SUbgoaIS Safe Area exists Area

Pay Agent to
Place Object

Place Object
at Goal

— Move to Object does not violate In Safe Area

Object in
Gripper

 Action does not violate conditions
needed for later actions

Robot has $

Payed Task Do Task and
Move to Goal Available Earn $

— Move to Object does not destroy passage

to goal area (Free path to object exists)

Robot near
Object

« Action does not invoke previously failed

S U btree Free path to Move to Ob-
Object exists ject

— Explained later...

oy

o R

231 The region of attraction of the BT

Mt

Shows what kind of « Create And-Or-Tree

disturbances can — Remove Actions AND
be handled — - becomes AND on T oR

— ? becomes OR
In Safe Area Object at
Goal
Free path to
SafeArea} AND AND

Pay Agent to OR

Place Object
Object in
Gripper ‘

Robot near
Object

Move to Safe
Area

Place Object
at Goal

Robot has $

Payed Task
Available

Do Task and

Move to Goal Eamn $

Free path to
Goal exists

Robot near
Object

Free path to
Object exists

Free path to
Goal exists
Free path to
Object exists

Payed Task
Available

Move to Ob-
ject

2

oy

By

1541 Four Design Specifications for the guarantees to hold

28 OCH KONST %%

SesS

* Action achieves Post-condition in finite
time

— Move to Object satisfies Robot near Object

 Action does not violate key previously A
achieved subgoals Area

Pay Agent to
Place Object

Robot has $ —>

Place Object
at Goal

— Move to Object does not violate In Safe Area

* Action does not violate conditions needed

Object in
Gripper

for later actons ~ SNTEATRTE S TN
— Move to Object does not destroy passage to - Move to ;;;' gams

goal area (Free path to object exists)

Robot near

« Action does not invoke previously

failed subtree Move to Ob-
Object exists ject

— Explained now...

Example: Turn the light on

« If Lamp 1 is broken, the policy will still try to move to Lamp 1...

» Solution:
— Swap order of Fallbacks (so Lamp 2 is first option after initial fail)
— Add precondition to deactivate first subtree ?
« When? I =
— Use AndOr-tree Extra T Came 1 g MU [T Campz ok] MG
Precond
- Count # falls Robot near Move to Robot near Move to
Lamp 1 Lamp 1 Lamp 2 Lamp 2

18-

7 True ,

Robot near
Lamp 1

2021-09-20 47

oy

By

1541 Four Design Specifications for the guarantees to hold

28 OCH KONST %%

SesS

* Action achieves Post-condition in finite
time

— Move to Object satisfies Robot near Object

 Action does not violate key previously A
achieved subgoals Area

Pay Agent to
Place Object

Robot has $ —>

Place Object
at Goal

— Move to Object does not violate In Safe Area

* Action does not violate conditions needed

Object in
Gripper

for later actons ~ SNTEATRTE S TN
— Move to Object does not destroy passage to - Move to ;;;' gams

goal area (Free path to object exists)

Robot near

« Action does not invoke previously

failed subtree Move to Ob-
Object exists ject

— Explained now...

Content

When to use Behavior Trees (BTs)?
— Creating complex controllers/policies

What are BTs?

— Hierarchically modular policies

How to create BTs?

— Improvise

— Use planning (backward chaining)
The Big Picture

— Genetic Algorithms
— Reinforcement Learning
— Control Theory (Performance Guarantees)

References

« [1] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "On modularity in
reactive control architectures, with an application to formal verification." arXiv
preprint arXiv:2008.12515 (2020).

 [2] Biggar, Oliver, Mohammad Zamani, and Iman Shames. "An expressiveness
hierarchy of Behavior Trees and related architectures." IEEE Robotics and
Automation Letters 6.3 (2021): 5397-5404.

« [3] Colledanchise, Michele, and Petter Ogren. "How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees." IEEE Transactions on
robotics 33.2 (2016): 372-389.

50

Questions

2021-09-19

51

