KTH ROYAL INSTITUTE
OF TECHNOLOGY

Lecture 7: Planning

Petter Ogren

— |
= | T -

oy

o R

il Reminder!

<8 OCH KONST 2%

a p
s

A reminder for everyone to register in Kattis as well as click the "Join the session"
button as described here (bottom of the page):

https://canvas.kth.se/courses/28858/pages/assignments?module item_id=340574

If you do not do this we can not see your submission and you WILL NOT RECEIVE A
GRADE!

TQrd)aM!at 17:00-18:00 | will go through the registration list and enter everyone that
is in there into Canvace by checking the "Hello World - check your Kattis registration”
assignment as passed.

Please register before that so you can get the assurance we can see and grade you
for the coming deadlines.

7% CANVAS

View announcement | Update your notification settings

When does a Robot need to do Planning?

« TogofromAtoB

To grasp object O %
o))

To assemble an object '

0% 9O
* Note: Planning horizon €< Predictability o) o 3
(0] oo
* In this lecture we assume the world is static 0% ©

2021-09-14

In general: Path planning is hard

« A complete algorithm finds a path if one exists and reports no path
exists otherwise.

« Several variants of the path planning problem have been proven to be
NP-hard.

« A complete algorithm may take exponential time.

« > We usually have to settle for “Good Enough” algorithms

Planning for Autonomous Driving

2

SO

00.00 m/h

How is this done?

Planning for Autonomous Driving

How is this done?

The foundation for many planning algorithms

» Shortest Path in a Graph
A Graph G=(V,E)

— Vertices (vi)
- EdgeS eij=(Vi, Vj)

start

— Costs ¢ goal

» Solved by

— Dijkstas algorithm
- A*

Dijkstras Algorithm (dynamic programming)

dist[s] <o (distance to source vertex is zero)
for all v e V-{s}
do dist[v] <00 (set all other distances to infinity)

C—0 (C, the set of closed vertices is initially empty)
Q«—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u « argmin(Q,dist) (select the element of Q with the min. distance)

C+—Cu{u} (add u to list of closed vertices)

for all v € neighbors[u]

do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] «d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)

return dist

a1 &

dist[s] <o

Dijkstras vs A* for all v € V-]
do dist[v] «—o0

C—0

Q—V

while Q =@
The closed set grows do u <« argmin(Q,dist + heur(u, start))
« As a Circle in Dijkstra (é‘—Cﬁ’{ue} bborslu]

. “ o or all v € neighbors|u
* As an ellipsoid in A* do if dist[v >dlst +w(u v)
then d[v] u] +w(u, v

-

'l'_|"'I
1 A 8

h B
g

Dijkstras vs A*

The closed set grows

As a Circle in Dijkstra
As an ellipsoid in A*

dist[s] «—o
for all v e V-{s}
do dist[v] «—o0
C—0
QV
while Q #0

do u « argmin(Q,dist + heur(u, start))

C—Cu{u}

for all v € neighbors[u]
do if dist[v] > dist[u] + w(u, v)

then

d[v] «d[u] + w(u, v)

(distance

(set all ot
(S, the se
(Q theq
(while th
(select th
(add u to

(if new sl
(set new

(if desire

How do we use A*? =~

« Graph? . . l

 Costs? . . .

oo .ﬁ%%%%y oo

- What chess piece [I8
has the graph on] B

the right? . . .
H B E B
H B E B

TR VR TR R

How do we use A*?

« Graph?
 Costs?

* Fora

Robot...

TR VR Y YR

How do we use A*?

Graph® :....-..
. Costs? 'ﬁ;
B
 Problems

— Robot is not a point (size)
— Robot does not live on R2 (manipulator, drone)

— Motion is restricted (car) f\c g\t\g\

Common Path Planning Approach

Continuous Problem

v

Configuration/State
Space Problem

Discretized Problem

* Sample & Search

Graph search

Configuration and State Spaces

Configuration: A complete specification of every position of
the system

— Ex: (X, Yy, theta) of a car

— Configuration space (C-space)
> space where conf. lives

— Ex: R3or R2

State: A complete specification of the system - E\CY
— Ex: (x,y, theta, velocity) of a car fa\t o

— Configuration space is subset of State space

oy

o R

231 2 link manipulator

28 OCH KONST %%
0 o

a %X%b

» Workspace: 3D space around robot » Configuration space: A complete
specification of every position of the
system

(workspace)
robot

Configuration
space robot
(single point)

(workspace)
obstacle

Configuration
space obstacle

Configuration Space Obstacles (CSO)

« Whatis a CS0O?

« Part of C-space that induces a collision somewhere

workspace

C-space

Configuration Space Obstacles (CSO)

« Whata CSO?

» Part of C-space that induces a collision somewhere

Work space Configuration space

ARAWA
N
4

Reference point

y
>

—

Common Path Planning Approach

Continuous Problem

How do we *

get the Configuration Space
Graph? Problem

Discretized Problem

* Sample & Search

Graph search

How to make a Graph from C-space?

R
i
ks
e
e

R
i
*
e
e

A
ks
ks
e
ke

TR VR S YR

oy

o R

28 OCH KONST 2%

IR

31 Solving A* on the Grid Graph

DUl [WIN|W|s|UO|[D |
Nl |WIN|IRFIN|W[lUO D

robot phase space, path length = 1.11 rads

How small should we make the grids?

* Tradeoff

— Reduce Computation (use large grids)

DU [WIN|W|s|U|D |
Nl |WIN|IRIN WU D

— Improve Accuracy (use small grids)
> Fake paths appear

> Real paths disappear

— Note:

> Smaller grids do not give near-
optimal paths

How to make a Graph from C-space?

A
Visibility

Graph

! Qinis

goal

How to make a Graph from C-space?

e Observation:

— Shortening any path gives
a visibility graph path

— Advantages?
— Drawbacks?

How to make a Graph from C-space?

A Voronoi

Graph

» Points that have equal distance to the two closest obstacles
« Advantages?
* Drawbacks?

High resolution in narrow areas
Low resolution in open areas...

Quadtree Um0

Decomposition
D empty D mixed . full

High resolution in narrow areas
Low resolution in open areas...

Octree
Decomposition

B 7

l:l EMPTY cell L MIXED cell . FULL cell

What about undrivable trajectories?

« Can a car drive any path?

14/09/2021

33

Dubins car

« The optimal path for a car (with no obstacles) can be created
using at most 3 circles and 1 straight line

24.78 path length, 13.17 distance

- 19.08 path length, 11.34 distanc

34

Can we fix an undrivable path?
Plan and Transform

Algorithm
1. Plan a short non-traversable
path
2. Pick two points on path J

3. Connect with traversable sub-
path

4. lterate from 2, until whole path
Is traversable

* Not always possible

» Hard to know when to stop

« Can yield very good solutions for visibility graph

Two Problems:

« How small to
make the grids?

* Is the graph
drivable?

Continuous Problem

v

Configuration Space
Problem

Discretized Problem

Common Path Planning Approach

Can we create

the graph and
search at the
same time?

v

Graph search

Sample & Search

Make the

graph
traversable!

Sample & Search: RRT

RRT: Rapidly Exploring Random Trees

Goal

oy

L,
?{%}KTH%,

i Example: Simple RRT Planner

w%xﬁb

Building an RRT

 To extend an RRT:

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

Building an RRT

 To extend an RRT
(cont.)

— Apply control inputs u for
time 6, so robot reaches ¢

— If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

RRT Algorithm

 To extend an RRT

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b
to a

Apply control inputs u for
time o6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

RRT

Resolution
improves over time
Drivable by design

Executing the Path

Once the RRT reaches s

— Backtrack along tree to identify edges that lead
from Sggar tO Syoa

— Drive robot using control inputs stored along
edges in the tree

* Problem: ordinary RRT explores X uniformly
— slow convergence

 Solution: bias distribution towards the goal
— Pick the goal point with X% probability

Building an RRT

Bias random points towards goal!
|.e. pick the goal every 10t time...

 To extend an RRT:

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

 To extend an RRT

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b
to a

Apply control inputs u for
time o6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

To extend an RRT

Things to think
about...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b to . (Xy)?

a

e (x,y,theta)?
Apply control inputs u for . ()((ytheta \)/),?
time o6, so robot reaches ¢ Y5 V) !

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

Closest in
what sense?

To extend an RRT

about...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to
steer the robot from b to
a

Apply control inputs u for
time 6, so robot reaches ¢

If no collisions occur in
getting from a to ¢, add c to
RRT and record u with new
edge

Things to think

y

Why are there
no Nodes here

Consider sampling bias

In narrow gaps
Along optimal grid path

Things to think
about...

What happens
here?

 To extend an RRT

— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to
steer the robot from b to
a

— Apply control inputs u for
time 6, so robot reaches ¢

— |f no collisions occur in

getting from a to ¢, add c to « Check if c can be connected to goal
RRT and record u with new using Dubins Trajectory (purple)
edge - If so done!

« Or post process to get smooth blue

Additional improvement:
Bidirectional Planners

 Build two RRTs, from start and goal state

« Complication: need to connect two RRTs
— bias the distribution, so that the trees meet

Some notes on RRT

* RRT finds one solution with probability -1
* Quality is not perfect...

» Brake through in 2011 (Karaman and Frazzoli)
« RRT*

 RRT* finds optimal solution with probability - 1

fxray RRT vs RRT* (Karaman and Frazzoli)

39 OCH KONST 2%

a p
s

i TR t’/ 7 R

3 (4
1) &
[— Q:-:-“
R L

o

Y
§ -
=
7
y
.

How does the RRT* work?

Same start as RRT...
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to
steer the robot from b to a

— Apply control inputs u for
time 6, so robot reaches ¢

— |If no collisions occur in
getting from a to c, add-ete
RRT and record uwith-new

edge

How does the RRT* work?

Same start as RRT...

Pick a random point a in X

Find b, the node of the tree
closest to a

Find control inputs u to steer
the robot from b to a

Apply control inputs u for time o,
so robot reaches ¢

_

If no collisions occur in getting
fromatoc

> Find set of Neighbors N of ¢
> Choose Best parent!

> Try to adopt Neighbors (if
good)

°©
VETENSKAP %
OCH KONST 2%

a p
s

RRT* (2011, original)

Algorithm 6: RRT*

\ 1V« {Zinit}; £ « 0
2 fori=1,...,ndo
K 3 Trand ¢ SampleFree;;
|, .
5
6

Tnearest ¢ NeareSt(G — (V: E): xrand)§
Tnew Steer(mncarcst:xrand))
if ObtacleFree(Zpearests Tnew) then

8

9
10
12
13
14

L

15
16
17

Xuear — Near(G = (V, E), Zpew, min{yrrr- (log(card (V))/ card (V))/4,1}) ;

V&~ VU {Zpew};

Tmin ¢ Tnearest’ Cmin COSt(xncarcst) + C(Line(mnemest: mncw))§

foreach Zncar € Xnear do // Connect along a minimum-cost path

if CollisionFree(Znear; Tnew) A COSt(ZTnear) + c(Line(Znear; Znew)) < Cmin then
|_ Tmin € Tnear; Cmin COSt(mncar) + C(Line(xnmr:xncw))

E+EU {(xminaxncw)};

foreach 2,0, € Xpear do // Rewire the tree
if CollisionFree(Znew,Znear) A Cost(Znew) + c(Line(Znew, Tnear)) < Cost(Znear)
then Z,uent ¢ Parent(Zpear);

s E - (E \ {(mparcnt:xncar)}) U {(xncw3mnc&u‘)}

‘r" G = (V, B);

Pt

If we just build a search
tree we get copies of
same state

Bes

N\

HER

—1

A

L -

RO T

[
i
\ [
t'/\ .

Allowing just one state
in each grid

AT

N

—1 :

| R T T T .71

[T I

[TR T T T .71

\

Allowing 4 states in each
grid: theta=(0,pi/2,pi,3pi/2)

(X,y) (x,y, theta) (x,y, theta, x_real, y_real)

| | |
| | |

/

— I}
L]]
/

« How to make sure transitions are
feasible?

» Allow positions that are not in center of grid -> Hybrid A*

% VETENSKAP SZ}

<8 OCH KONST 2%

e (grid_no (x,theta), actual_pos, cost, tot_cost_estimate, parent_node)

Algorithm 1 Standard version of Hybrid A*

procedure PLANPATH(m, p, x5, 05, G)
ns — (5757 087 xs; 07 h($57 G)? _)

I:
2
3: O« {ns}
4: C«+10
5. while O # () do
6 n < node with minimum f value in O
N 7 O+ O\ {n}
[Standard A* 8 O« CU{n}
J 9: if n, € G then
10: return reconstructed path starting at n
11: else
12: UPDATENEIGHBORS(m, , O, C\,n)
13: end if

14: end while
15: return no path found
16: end procedure Key step

oy

fere Hybrid A*

IR

for all desired
heading changes 17: procedure UPDATENEIGHBORS(m, , O,C, n) :
18:for all § do ?

Add to closed if
obstacle

(if m,(n’) = obstacle then
If grid is non-empty % C+Ccu{n'}
. ; else if In € O : nz; = n/; then

~

Replace node in open
if cost improvement

(grid_no, actual_pos, cost, tot_cost_estimate, parent_node) }

i

19: n' < succeeding state of n using p(ng, d)
20: if n’ ¢ C then

Add to Open

24: compute new costs g’
25 if ¢’ < g value of existing node in O then
26: replace existing node in O with n/ Key Difference

end if
else
29: O+ O0ou{n'}
30: end if
31: end if

32: end for
33: end procedure

Need way to move

between given
Note: Heading is discretized, only position is allowed to be “free” in cell headings

Planning for Autonomous Driving

« Orange: Hybrid A*

« Purple: Obstacle free solution
(Dubins Car) from orange to goal

« Blue: Smooothed final trajectory

Common Path Planning Approach

Continuous Problem

v

Configuration/State
Space Problem

Discretized Problem

* Sample & Search

Graph search

The End

