KTH ROYAL INSTITUTE
OF TECHNOLOGY

Introduction to Robotics

DD2410 - Introduction to Robotics

Lecture 4 - Differential Kinematics & Dynamics

Schedule - Lectures

Sep 02 - 1. Intro, Course fundamentals, Topics, What is a Robot, History, Applications.
Sep 03 - 2 ROS Introduction (Scheduled as lab, will be in zoom only)

Sep 03 - 3 Manipulators, Kinematics

Sep 06 - 4. Differential kinematics, dynamics

Sep 08 - 5. Actuators, sensors | (force, torque, encoders, ...)
Sep 13 - 6. Grasping, Motion, Control

Sep 15 - 7. Planning (RRT, A*, ...)
Sep 20 - 8. Behavior Trees and Task Switching

Sep 22 - 9. Mobility and sensing Il (distance, vision, radio, GPS, ...)
Sep 27 - 10. Localisation (where are we?)

Sep 29 - 11. Mapping (how to build the map to localise/navigate w.r.t.?)
Oct 04 - 12. Navigation (how do | get from Ato B?)

Oct 06 - Q/A - Open questions to your teachers.

Overview

* Differential kinematics
— Jacobians
— Singularities
— Manipulability
— Calculations
* Dynamics

— Forces and accelerations

— algorithms for calculations

Differential kinematics

* For many operations, we are not interested in the
stationary kinematics, but rather the differential
kinematics, mainly for the mapping between velocities in
configuration space and cartesian space

Differential kinematics - Vacuum cleaner type

Ed cosf O] ,

g = |[sinf O L}}
0] 0 1

L vwl _I_ vwg
T T

Vs — Uy
RO

271 f Aenc

Ve, =

 ticks per rev

Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

0K(0),

« Where each elementj in Jis defined as

50,

Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

« Where each elementj in Jis defined as o)

00

Forward kinematics

« Transform °TE from end effector to base

frame is dependant on configuration ©

* The function that generates the end ' | PLT (o e
effector pose X given 0, is called forward
kinematics, K

Link 4

X = K(0), r="T p_

where p is the position of the endpoint in
the last frame

* Commonly, we defing/ K(©) to output the
pose vector X aBy],whereaBy
are the Euler Ang

Forward kinematics

« Transform °TE from end effector to base

frame is dependant on configuration ©

-~

T4 C|3 ~.

Link 3

* The function that generates the end .
effector pose X given O, is called forward .| |
kinematics, K

X=k@. r=Te,] o

where p is the position of the endpoint in
the last frame

* Commonly, we define K(©) to output the > T.= t)
_ =\ 07 1
pose vector X =[x y z , where a By

are the Euler Angles

Link 4
(end-effector)

See R-MPC 2.4

Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

0K (©),
50,

« Where each elementj inJis defined as

e« Thus, each column in J can be seen as the vector AXi, or

the motion in X caused by motion in the joint 6.

Differential kinematics

* The closed form of a typical manipulator Jacobian is not
printable

Differential kinematics

FKTHE

% VETENSKAP é}

@8 OCH KONST 8%

18 o
TN

* The closed form of a typical manipulator Jacobian is not

printable

The Puma 560 can be seen in Figures 1 and 2
The forward kinematics Ky can be formulated as:

X = K¢(O)

where
i th
Y thy
z th:
X = . @ = l.l
P ta
t s
a te
we have:
r = cos(f)* Jascos(0a) 4+ ageos(fy + B3) — dysin(fla + 83)] — dasin(6y)
y = .*.".l":.lrh R l_-‘fzi‘(l.‘i:“2) = n’-_grrl.ﬂ:”z + fg) — fl'lj,-"f-"f‘:,”'_a + g | -+ tfgr'u.u:f!l)

= agsin(fa + f9) + aosin(fy) — dycos(fa +)
-1, 8l{c23cds5 452305 —cladss |

P = tan" (q(c3acis61s2305) Tolalet)

' tan=1(—al(c23cds54+82305) +cladsh \
- & Veim(tan =T —=1(c23cd b4 520ch) Felede b/ —cl[c23cds5+ #2300) —s Led D)) (=20cdsb—c23ch)
—ii o 1, #23 sdel — cdehal) 4232546 |

@ = M I eet— Aot — 2350/

Where the latter uses shorthand. The full expression is:

I { sinifiyicosify L@ cosidy isinidy | 4sinifs+idq)cosidy}l—cosifiy) sini@ziainiis])
SR am
F LN S L e U L TS LA T L T N EL Y T EILEY])

[S

Figmre 1: The puma 55

" i 1u-\‘1 = 5 +0-;|nu:?1.......:1.-_-h ;I_I: rin.frsl- -:-..n?z._ol e ‘;m_‘“ lé....ul".|..ri-1--m|ﬂ-.
1 f —=inidgees(dy aicosifg lein(@s)Lain(dy dlcos| Gteosidiy jeimiftyg iy . : - ot _
sl e = cou By i con By +lglo CILLTY .|n|&u,..|nu? EENT --lﬁ-_:_.mrul winitig rlu.ﬂ-u (#en(#3483) con(@q)2in(fy) —coa(y +83)=ex(85))
| —u:-u‘\-l-dalulﬂlﬂ* \.os-ﬂgl—custﬁ‘* cosi g 1ein (g) ,-l—-r»ﬂ"t-l—daln'ut?. sinitip)
@ - e ST Dy + Oy (im0 i (g) —coR Py | coa By |eos (U)| —co@| By Jlg paini by jeoafg))

44

Differential kinematics (J.J. Craig chapter 5)

* The closed form of a typical manipulator Jacobian is often
not printable, but can be derived by sequential application
of frame transforms

* The motion of frame i+17, is a function of the motion of
frame i and the motion of the joint between them.

Differential kinematics (R-MPC chapter 3): Rotational joints

i+1 _itlpi s il s
Wi =R w; 0,4 T2

i+1 i+l i i]
Uf"l“]- IR(UI—I- ﬂ.]fx Pi—l-l)

Differential kinematics (R-MPC chapter 3) - Prismatic joints

i+1 i+l p i
;1 ; R’ w;,

il itlpgi. i o s il
Ty =T ROY ey X TP tdiy T i

Differential kinematics (J.J. Craig chapter 5)

* Consequetive application of link transforms gives us
velocities in end effector frame

* Note: resulting velocities are multilinear in joint velocities!

« Multiplying by rotation transform BRE gives us velocities in
base frame

* Thus we can derive J(O)

0
lwl — ﬂ :| .
Example: Planar robot L6

K]
1U1= 01,
0
2 , ¢z 5 0 0 l520
Uy = 57 ¢ O Ley | =1 Lty |,
R ERIR 0

F’_E\. - @3 = ¢
- :Ez /.r’ B 1!15'-2{}1
ﬁ? . Sy = Lob +5L6 +65) |.
BN 0
J L
/"’ﬂ,-ﬁ‘l €1z 512 O
Ji'n ER=?R éR %RZ 12 13 0
T o 0 1

0

~ly516; — bs1p(6; + 63)
Uua - I!Il ﬂlﬂl + !2!’.‘[;}:[6’[+ 6'2:] .

0
lwl — ﬂ :| .
Example: Planar robot L6

K
1Ul = 0],
0
o ¢z 5 0 0 lisyf
Xj 21}?_ = .5'1 CE D 315'| = |!1-'| Czﬂl |
0 01| 0 0

;“'_ﬁ:\. r“x 3‘”3 = zfﬂzs
p f’z /,’ Elszii'
', . 3y = @ﬁ+%@+%].
" il
¥ s -
/"ﬂ,-ﬂl €1z 512 O
Ji-n ER=?R éR §R= 12 13 0
T 0 0 1

~ly516; — bs1p(6; + 63)
“uy= | eyt + 32?1:[5'1 +6;) |-
]

07(®) = [“3131 = sy —bsyo }

Lieg + e beg

Jacobians (R-MPC 3.1.3)

X=J(0)O

 Column j in J is the contribution of the i:th joint to the
velocity of the end effector.

* Each column in J can be computed individually.

Jacobians (R-MPC 3.1.3)

X=J(©)O
X
>

 Column j in J is the contribution of t@éth joint to the
velocity of the end effector.

o
* Each columnin J ca%@%mputed individually.
Sl
O

v

Example: Planar robot

5@ = [

—ly151 — 1381, —lys19
licp + ey hep

|

What happens if both angles are 07

Example: Planar robot

)'<= ““llSl —l2.5‘12 —'ZZS]_Z él |
hey+hey hen J18

What happens if both angles are 0?

When the Jacobian loses rank, we
get a kinematic singularity - we lose
the ability to generate motion in
some direction!

Manipulability

* We can generalize this into a concept of manipulability w
Can't move much this way
ﬁ:ﬁhn"‘ / Can moaove a lot this way w=Y det (JJT)

w is proportional to the
volume of the manipulability
ellipsoid.

[' M “

' ¢ - -

A B - -
. ’ T

Isotropic manipulability NOT isotropic
ellipsoid manipulability ellipsoid

Manipulability

We can generalize this into a concept of manipulability w

I'lll.il'.l|.r|I:||-1 slity Bl

w=vdet(JJ")

w is proportional to the
volume of the manipulability
ellipsoid.

Manipulability example

Jacobians

* The inverse Jacobian is trivial to calculate, as long as the
Jacobian matrix is invertible.

* If Jis not invertible, we can often use pseudo-inverse
instead.

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)

* With linear approximation, we get
ex~J(0)eq

Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)
* With linear approximation, we get (assuming invertible J)
EXNJ(("))E@
eo~J (O)e,

Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

AN

Given target X and initial approximation ®

Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

AN

Given target X and initial approximation ®

repeat

until €, <tolerance

Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(0)
QZX—X

until €, <tolerance

Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(®©)
EXZX X
€o=J 1(@)

until €, <tolerance

Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(®©)
€y = =X-X
e@:J](@)
O=0—c,

until €, <tolerance

Jacobians for static forces

* Virtual work must be same independent of coordinates

Flsy = 1780
* We remember that:
ox = J&B

* Which gives us:
Fry=+T
t=J'F

Jacobians for static forces

t=J'F

* We can now see that for singular configurations, there will
be directions where the required torque for a given force
goes to zero, or inversely, the forces generated by a
given torque tend to infinity. This may cause damage
to the robot or the environment.

Jacobians for static forces

t=J'F

* We can also calculate inverse kinematics by virtual forces
and torques. We apply a "force" correcting the end
effector position, calculate the torques this would
generate, and move the robot accordingly. This gives us
the update step:

e@=JT((:))eX

* This is useful when inverse of J does not exist, but
typically converges slower.

Dynamics (R-MPC Chapter 7)

4 Iy _IJ.'}' _Ixz
I'=|—Ly I, ~1L, |,

@ w _‘rxz _I}'z ‘rzz
=
— 2, .2
@% I, =ff (y* + 2% pdv,
P) "

M
Ly = |[[&+ Ao
|) v
I, = fff (x% + yz}pdu,
v
= myg, N="To+wx e, Ly ffﬁxwdw
I, = fff xzpduw,
V
- —ffﬁ yzpduv,

ﬁ%@}% Dynamics (R- MPC chapter 7) - Rotational joints

{{} VETENSKAP é}
<8 OCH KONST %

RN

_itlpi i3
Wi =" R w0 T 2y

_itlpg i i

; il pis i4lpi ; i+1 o i+1 =

g = IR, x TPy + ey x (e x PP) 4+ 1)

58D, Dynamics (R-MPC chapter 7) - Prismatic joints

{@ VETENSKAP %

OCH KONST,

es®

i+1 i+1
Wiy = R a)

UI-I—
i+l il pi
@iy = R w
i =T'RCa; x ' Py + oy x (o, x Py +'9y)

i1 : sl i3
+ 2 ey xdy T2 iy T

Jii'cr :J{L"f X IFCJ +!£I'J‘j > {J{Uj+!Pcr}+£iir

Dynamics

Newton - Euler approach:

* Find the acceleration and velocity of each
joint, working outwards

* Find the necessary torque/force to generate
that acceleration, adding the external forces
and torques, working inwards

Dynamics

Cx3
{%’ VETENSKAP %
2

@8 OCH KONST 8%

0 o
TN

Outward iterations: i ;0 — 5
i+ = ::+1R i, +6 |"+lirl_+l1
Ty =R +::—HR fw; x Gy T Ziy + 640 T 2,
o =R x TPy ey x (oo x TP +15),

i+l i+1 - i+1
e = .
Cis @iyl X PCFH
[

i=+1 i+l i+1 i+1 .-

i+l F +1

. i+l
i+1 =My Ve,
i+1 I i+l - i<l . i-+1
Nejp ="y T + 7w x UL T ey
Inward iterations: i : 6 — 1

e i+ .
=R i
‘n; ="N, +;+1R II_l"‘r'+1 +IPC,. x 'F,

i i il
TR X g R i

—inliz.
] I

T, =

Dynamics (R-MPC chapter 7)

The resulting dynamic equations can be written on the
form (state-space equation):

T = M(O)® + V(0,0) + G(O) + J'f

Dynamics (DLR)

1=M(0)0+V (0,0)+G(0)+Jf

Dynamics (DLR)

German

Aerospace
DLR _Center

titute of Robotics
d Mechatronics

Dynamics (DLR)

German

Aerospace
DLR _Center

State of the art - industrial manipulation

Dynamics (DLR)

End-Effector Airbags for Accelerating

Human-Robot Collaboration

