Introduction to Robotics

DD2410 - Introduction to Robotics

Lecture 4 - Differential Kinematics \& Dynamics

Sep 02-1. Intro, Course fundamentals, Topics, What is a Robot, History, Applications.
Sep 03-2 ROS Introduction (Scheduled as lab, will be in zoom only)
Sep 03-3 Manipulators, Kinematics
Sep 06-4. Differential kinematics, dynamics
Sep 08-5. Actuators, sensors I (force, torque, encoders, ...)
Sep 13-6. Grasping, Motion, Control
Sep 15-7. Planning (RRT, A*, ...)
Sep 20-8. Behavior Trees and Task Switching
Sep 22-9. Mobility and sensing II (distance, vision, radio, GPS, ...)
Sep 27-10. Localisation (where are we?)
Sep 29-11. Mapping (how to build the map to localise/navigate w.r.t.?)
Oct 04-12. Navigation (how do I get from A to B?)
Oct 06 - Q/A - Open questions to your teachers.

Overview

- Differential kinematics
- Jacobians
- Singularities
- Manipulability
- Calculations
- Dynamics
- Forces and accelerations
- algorithms for calculations

Differential kinematics

- For many operations, we are not interested in the stationary kinematics, but rather the differential kinematics, mainly for the mapping between velocities in configuration space and cartesian space

Differential kinematics - Vacuum cleaner type

Differential kinematics

- The instantaneous transform between velocities in robot configuration space and cartesian space is given by the Jacobian:

$$
\dot{X}=J(\Theta) \dot{\Theta}
$$

- Where each element $j_{m n}$ in J is defined as $\frac{\partial K(\theta)_{m}}{\partial \theta_{n}}$

Differential kinematics

- The instantaneous transform between velocities in robot configuration space and cartesian space is given by the Jacobian:

$$
\dot{X}=J(\Theta) \dot{\Theta}
$$

- Where each element $j_{m n}$ in J is defined as $\frac{K(\theta)}{\sigma \theta_{n}}$

Forward kinematics

- Transform ${ }^{0} \mathbf{T}_{\mathbf{E}}$ from end effector to base frame is dependant on configuration $\boldsymbol{\Theta}$
- The function that generates the end effector pose \mathbf{X} given $\boldsymbol{\Theta}$, is called forward kinematics, K

$$
X=K(\Theta), \quad r={ }^{0} T_{E} p_{E}
$$

where \mathbf{p} is the position of the endpoint in the last frame

- Commonly, we define $K(\boldsymbol{O})$ to output the pose vector $\mathbf{X}=[\text { x y z } \alpha \beta \gamma]^{\top}$, where $\alpha \beta \gamma$ are the Euler Angles

Forward kinematics

- Transform ${ }^{0} \mathbf{T}_{\mathbf{E}}$ from end effector to base frame is dependant on configuration $\boldsymbol{\Theta}$
- The function that generates the end effector pose \mathbf{X} given $\boldsymbol{\Theta}$, is called forward kinematics, K

$$
X=K(\Theta), \quad r={ }^{0} T_{E} p_{E}
$$

where \mathbf{p} is the position of the endpoint in the last frame

- Commonly, we define $K(\Theta)$ to output the pose vector $\mathbf{X}=[\mathrm{xyz} \alpha \beta \gamma]$, where $\alpha \beta \gamma$ are the Euler Angles
${ }^{\circ} \mathrm{T}_{\mathrm{E}}=\left(\begin{array}{ll}R & t \\ 0 & 1\end{array}\right)$
See R-MPC 2.4

Differential kinematics

- The instantaneous transform between velocities in robot configuration space and cartesian space is given by the Jacobian:

$$
\dot{X}=J(\Theta) \dot{\Theta}
$$

- Where each element $j_{m n}$ in J is defined as $\frac{\partial K(\theta)_{m}}{\partial \theta_{n}}$
- Thus, each column in J can be seen as the vector ΔX_{i}, or the motion in X caused by motion in the joint θ_{i}.

Differential kinematics

- The closed form of a typical manipulator Jacobian is not printable

Differential kinematics

- The closed form of a typical manipulator Jacobian is not printable

The Puma 560 can be seen in Figures 1 and 2.
The forward kinematics K_{f} can be formulated as:

$$
\begin{equation*}
\mathbf{X}=K_{f}(\Theta) \tag{1}
\end{equation*}
$$

where

$$
\mathbf{X}=\left[\begin{array}{c}
x \tag{2}\\
y \\
z \\
p \\
t \\
a
\end{array}\right], \quad \boldsymbol{\Theta}=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4} \\
\theta_{5} \\
\theta_{6}
\end{array}\right]
$$

$$
\begin{align*}
& x=\cos \left(\theta_{1}\right) *\left[a_{2} \cos \left(\theta_{2}\right)+a_{3} \cos \left(\theta_{2}+\theta_{3}\right)-d_{4} \sin \left(\theta_{2}+\theta_{3}\right)\right]-d_{3} \sin \left(\theta_{1}\right) \\
& y=\sin \left(\theta_{1}\right) *\left[a_{2} \cos \left(\theta_{2}\right)+a_{3} \cos \left(\theta_{2}+\theta_{3}\right)-d_{4} \sin \left(\theta_{2}+\theta_{3}\right)\right]+d_{3} \cos \left(\theta_{1}\right) \\
& z=-a_{3} \sin \left(\theta_{2}+\theta_{3}\right)+a_{2} \sin \left(\theta_{2}\right)-d_{4} \cos \left(\theta_{2}+\theta_{3}\right) \\
& p=\tan ^{-1}\left(\frac{s 1(c 23 c 4 s 5+s 23 c 5)-c 1 s 4 s 5}{c 1(c 23 c 4 s 5+s 23 c 5)+s 1 s 4 s 5}\right) \tag{3}\\
& t=\tan ^{-1}\left(\frac{-s 1(c 23 c 4 s 5+s 23 c 5)+c 1 s 4 s 5}{}\right. \\
& \text { sin } \tan -1(c 23 c 4 s 5+s 23 c 5)+c 1 s 4 s 5 /-c 1(c 23 c 4 s 5+s 23 c 5)-s 1 s 4 s 5))(s 23 c 4 s 5-c 23 c 5) \\
& a=\tan ^{-1}\left(\frac{-(s 23(s 4 c 6-c 4 c 5 s 6)+c 23 s 5 s 6)}{s 23(s 4 s 6-c 4 c 5 c 6)-c 23 s 5 c 6}\right)
\end{align*}
$$

Where the latter uses shorthand. The full expression is:

\hat{Z}_{4}
$p-\tan ^{-1}\left(\frac{\sin \left(\theta_{1}\right)\left(\cos \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{4}\right) \operatorname{tn}\left(\theta_{5}\right)+\sin \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{5}\right)\right)-\cos \left(\theta_{1}\right) \sin \left(\theta_{4}\right) \sin \left(\theta_{5}\right)}{\cos \left(\theta_{1}\right)\left(\cos \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{4}\right) \sin \left(\theta_{5}\right)+\sin \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{5}\right)\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{4}\right) \sin \left(\theta_{5}\right)}\right)$
, - $\tan ^{-1} \quad-\sin \left(\theta_{1}\right)\left(\cos \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{5}\right) \tan \left(\theta_{0}\right)+\sin \left(\theta_{2}+\theta_{3}\right) \cos \left(\theta_{0}\right)\right)+\cos \left(e_{1}\right) \tan \left(\theta_{8}\right) \tan \left(\theta_{0}\right)$

- $\quad \tan ^{-1}\left(\frac{-\left(\sin \left(\theta_{3}+\theta_{3}\right)\left(\sin \left(\theta_{5}\right) \cos \left(\theta_{6}\right)-\cos \left(\theta_{4}\right) \cos \left(\theta_{5}\right) \tan \left(\theta_{6}\right)\right)+\cos \left(\theta_{2}+\theta_{3}\right) \sin \left(\theta_{5}\right) \sin \left(\theta_{6}\right)\right.}{\sin \left(\theta_{2}+\theta_{3}\right)\left(\sin \left(\theta_{4}\right) \sin \left(\theta_{6}\right)-\cos \left(\theta_{4}\right) \cos \left(\theta_{5}\right) \cos \left(\theta_{6}\right)\right)-\cos \left(\theta_{2}+\theta_{3}\right) \sin \left(\theta_{5}\right) \cos \left(\theta_{6}\right)}\right)$

Differential kinematics (J.J. Craig chapter 5)

- The closed form of a typical manipulator Jacobian is often not printable, but can be derived by sequential application of frame transforms
- The motion of frame $i+1$, is a function of the motion of frame i and the motion of the joint between them.

Differential kinematics (R-MPC chapter 3): Rotational joints

$$
\begin{aligned}
i+1 & \omega_{i+1}
\end{aligned}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}, ~+{ }_{i} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right) .
$$

Differential kinematics (R-MPC chapter 3) - Prismatic joints

$$
\begin{aligned}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i} \\
& { }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+\dot{d}_{i+1}{ }^{i+1} \hat{Z}_{i+1}
\end{aligned}
$$

Differential kinematics (J.J. Craig chapter 5)

- Consequetive application of link transforms gives us velocities in end effector frame
- Note: resulting velocities are multilinear in joint velocities!
- Multiplying by rotation transform ${ }^{8} R_{E}$ gives us velocities in base frame
- Thus we can derive $J(\Theta)$

Example: Planar robot

$$
\begin{aligned}
& { }^{1} \omega_{1}=\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right], \\
& { }^{1} v_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \\
& { }^{2} \omega_{2}=\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}+\dot{\theta}_{2}
\end{array}\right] \text {, } \\
& { }^{2} v_{2}=\left[\begin{array}{ccc}
c_{2} & s_{2} & 0 \\
-s_{2} & c_{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
l_{1} \dot{\theta}_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
l_{1} s_{2} \dot{\theta}_{1} \\
l_{1} c_{2} \dot{\theta}_{1} \\
0
\end{array}\right], \\
& { }^{3} \omega_{3}={ }^{2} \omega_{2}, \\
& { }^{3} v_{3}=\left[\begin{array}{c}
l_{1} s_{2} \dot{\theta}_{1} \\
l_{1} c_{2} \dot{\theta}_{1}+l_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right] . \\
& { }_{3}^{0} R={ }_{1}^{0} R \quad{ }_{2}^{1} R \quad{ }_{3}^{2} R=\left[\begin{array}{ccc}
c_{12} & -s_{12} & 0 \\
s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& { }^{0} v_{3}=\left[\begin{array}{c}
-l_{1} s_{1} \dot{\theta}_{1}-l_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
l_{1} c_{1} \dot{\theta}_{1}+l_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right] .
\end{aligned}
$$

Example: Planar robot

$$
\begin{aligned}
{ }^{1} \omega_{1} & =\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}_{1}
\end{array}\right], \\
{ }^{1} v_{1} & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \\
{ }^{2} \omega_{2} & =\left[\begin{array}{c}
0 \\
0 \\
\dot{\theta}_{1}+\dot{\theta}_{2}
\end{array}\right], \\
{ }^{2} v_{2} & =\left[\begin{array}{cc}
c_{2} & s_{2} \\
-s_{2} \\
0 & c_{2} \\
0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
l_{1} \dot{\theta}_{1} \\
0
\end{array}\right]=\left[\begin{array}{cc}
l_{1} s_{2} \dot{\theta}_{1} \\
l_{1} c_{2} \dot{\theta}_{1} \\
0
\end{array}\right], \\
{ }^{3} \omega_{3} & ={ }^{2} \omega_{2}, \\
{ }^{3} v_{3} & =\left[\begin{array}{cc}
l_{1} c_{2} \dot{\theta}_{1}+l_{1} s_{2} \dot{l}_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
l_{2}
\end{array}\right] . \\
{ }_{3}^{0} R & ={ }_{1}^{0} R \\
{ }_{2}^{1} R & { }_{3} R=\left[\begin{array}{cc}
c_{12} & -s_{12} \\
s_{12} & 0 \\
c_{12} & 0 \\
0 & 1
\end{array}\right] \\
{ }^{0} v_{3} & =\left[\begin{array}{cc}
-l_{1} s_{1} \dot{\theta}_{1}-l_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
l_{1} c_{1} \dot{\theta}_{1}+l_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
0
\end{array}\right] . \\
0 J(\Theta) & =\left[\begin{array}{cc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right]
\end{aligned}
$$

$$
\dot{\mathbf{X}}=\mathbf{J}(\Theta) \dot{\Theta}
$$

- Column j_{i} in \mathbf{J} is the contribution of the $\mathrm{i}:$ th joint to the velocity of the end effector.
- Each column in \mathbf{J} can be computed individually.

Jacobians (R-MPC 3.1.3)

$$
\dot{\mathbf{X}}=\mathbf{J}(\Theta) \dot{\Theta}
$$

- Column j_{i} in J is the contribution of threith joint to the velocity of the end effector.

- Each column in J can Ke Computed individually.

Example: Planar robot

$$
{ }^{0} J(\Theta)=\left[\begin{array}{cc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right]
$$

What happens if both angles are 0 ?

Example: Planar robot

$$
\dot{\mathrm{X}}=\left[\begin{array}{cc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

What happens if both angles are 0 ?
When the Jacobian loses rank, we get a kinematic singularity - we lose the ability to generate motion in some direction!

Manipulability

- We can generalize this into a concept of manipulability w

$$
w=\sqrt{\operatorname{det}\left(J J^{T}\right)}
$$

w is proportional to the volume of the manipulability ellipsoid.

Manipulability

- We can generalize this into a concept of manipulability w

$$
w=\sqrt{\operatorname{det}\left(J J^{T}\right)}
$$

w is proportional to the volume of the manipulability ellipsoid.

Manipulability example

Jacobians

- The inverse Jacobian is trivial to calculate, as long as the Jacobian matrix is invertible.
- If J is not invertible, we can often use pseudo-inverse instead.

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

- We start with an approximation

$$
\widehat{\Theta}=\Theta+\epsilon_{\Theta}
$$

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

- We start with an approximation

$$
\begin{aligned}
& \widehat{\Theta}=\Theta+\epsilon_{\Theta} \\
& X+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right)
\end{aligned}
$$

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

- We start with an approximation

$$
\begin{aligned}
& \widehat{\Theta}=\Theta+\epsilon_{\Theta} \\
& X+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right) \\
& K(\Theta)+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right)
\end{aligned}
$$

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

- We start with an approximation

$$
\begin{aligned}
& \widehat{\Theta}=\Theta+\epsilon_{\Theta} \\
& X+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right) \\
& K(\Theta)+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right)
\end{aligned}
$$

- With linear approximation, we get

$$
\epsilon_{X} \approx J(\Theta) \epsilon_{\Theta}
$$

Jacobians for numerical inverse kinematics

- We want to find the inverse kinematics

$$
\Theta=K^{-1}(X)
$$

- We start with an approximation

$$
\begin{aligned}
& \widehat{\Theta}=\Theta+\epsilon_{\Theta} \\
& X+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right) \\
& K(\Theta)+\epsilon_{X}=K\left(\Theta+\epsilon_{\Theta}\right)
\end{aligned}
$$

- With linear approximation, we get (assuming invertible J)

$$
\begin{aligned}
& \epsilon_{X} \approx J(\Theta) \epsilon_{\Theta} \\
& \epsilon_{\Theta} \approx J^{-1}(\Theta) \epsilon_{X}
\end{aligned}
$$

Jacobians for numerical inverse kinematics

- Algorithm for finding inverse kinematics

Given target \mathbf{X} and initial approximation $\widehat{\Theta}$

Jacobians for numerical inverse kinematics

- Algorithm for finding inverse kinematics Given target \mathbf{X} and initial approximation $\widehat{\Theta}$
repeat

$$
\widehat{X}=K(\widehat{\Theta})
$$

until $\epsilon_{X} \leqslant$ tolerance

Jacobians for numerical inverse kinematics

- Algorithm for finding inverse kinematics Given target \mathbf{X} and initial approximation $\widehat{\Theta}$
repeat

$$
\begin{aligned}
& \widehat{X}=K(\widehat{\Theta}) \\
& \epsilon_{X}=\widehat{X}-X
\end{aligned}
$$

until $\epsilon_{X} \leqslant$ tolerance

Jacobians for numerical inverse kinematics

- Algorithm for finding inverse kinematics Given target \mathbf{X} and initial approximation $\widehat{\Theta}$
repeat

$$
\begin{aligned}
& \widehat{X}=K(\widehat{\Theta}) \\
& \epsilon_{X}=\widehat{X}-X \\
& \epsilon_{\Theta}=J^{-1}(\widehat{\Theta}) \epsilon_{x}
\end{aligned}
$$

until $\epsilon_{X} \leqslant$ tolerance

Jacobians for numerical inverse kinematics

- Algorithm for finding inverse kinematics Given target \mathbf{X} and initial approximation $\widehat{\Theta}$
repeat

$$
\begin{aligned}
& \widehat{X}=K(\widehat{\Theta}) \\
& \epsilon_{X}=\widehat{X}-X \\
& \epsilon_{\Theta}=J^{-1}(\widehat{\Theta}) \epsilon_{x} \\
& \widehat{\Theta}=\widehat{\Theta}-\epsilon_{\Theta}
\end{aligned}
$$

until $\epsilon_{X} \leqslant$ tolerance

Jacobians for static forces

- Virtual work must be same independent of coordinates

$$
\mathcal{F}^{T} \delta \chi=\tau^{T} \delta \Theta
$$

- We remember that:

$$
\delta \chi=J \delta \Theta
$$

- Which gives us:

$$
\begin{aligned}
\mathcal{F}^{T} J & =\tau^{T} \\
\tau & =J^{T} \mathcal{F}
\end{aligned}
$$

Jacobians for static forces

$$
\tau=J^{T} \mathcal{F}
$$

- We can now see that for singular configurations, there will be directions where the required torque for a given force goes to zero, or inversely, the forces generated by a given torque tend to infinity. This may cause damage to the robot or the environment.

Jacobians for static forces

$$
\tau=J^{T} \mathcal{F}
$$

- We can also calculate inverse kinematics by virtual forces and torques. We apply a "force" correcting the end effector position, calculate the torques this would generate, and move the robot accordingly. This gives us the update step:

$$
\epsilon_{\Theta}=J^{T}(\widehat{\Theta}) \epsilon_{x}
$$

- This is useful when inverse of J does not exist, but typically converges slower.

Dynamics (R-MPC Chapter 7)

$$
{ }^{A} I=\left[\begin{array}{rrr}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right]
$$

$$
\begin{aligned}
I_{x x} & =\iiint_{V}\left(y^{2}+z^{2}\right) \rho d v \\
I_{y y} & =\iiint_{V}\left(x^{2}+z^{2}\right) \rho d v \\
I_{z z} & =\iiint_{V}\left(x^{2}+y^{2}\right) \rho d v \\
I_{x y} & =\iiint_{V} x y \rho d v \\
I_{x z} & =\iiint_{V} x z \rho d v \\
I_{y z} & =\iiint_{V} y z \rho d v
\end{aligned}
$$

Dynamics (R- MPC chapter 7) - Rotational joints

$$
\begin{aligned}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \\
& { }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right) \\
& { }^{i+1} \dot{\omega}_{i+1}={ }_{i}^{i+1} R^{i} \dot{\omega}_{i}+{ }_{i}^{i+1} R^{i} \omega_{i} \times \dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}+\ddot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \\
& { }^{i+1} \dot{v}_{i+1}={ }_{i}^{i+1} R\left[{ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+{ }^{i} \dot{v}_{i}\right]
\end{aligned}
$$

Dynamics (R-MPC chapter 7) - Prismatic joints

$$
\begin{aligned}
&{ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}, \\
& v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+\dot{d}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \\
&{ }^{i+1} \dot{\omega}_{i+1}={ }_{i}^{i+1} R R^{i} \omega_{i} \\
&{ }^{i+1} \dot{v}_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+{ }^{i} \dot{v}_{i}\right) \\
&+2^{i+1} \omega_{i+1} \times \dot{d}_{i+1}{ }^{i+1} \hat{Z}_{i_{i+1}}+\ddot{d}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \\
&{ }^{i} \dot{v}_{C_{l}}={ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{C_{i}}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i}+{ }^{i} P_{C_{i}}\right)+{ }^{i} \dot{v}_{i}
\end{aligned}
$$

Dynamics

Newton - Euler approach:

- Find the acceleration and velocity of each joint, working outwards
- Find the necessary torque/force to generate that acceleration, adding the external forces and torques, working inwards

Dynamics

Outward iterations: $i: 0 \rightarrow 5$

$$
\begin{aligned}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{\mathbf{Z}}_{i+1}, \\
& { }^{i+1} \dot{\omega}_{i+1}={ }_{i}^{i+1} R^{i} \dot{\omega}_{i}+{ }_{i}^{i+1} R^{i} \omega_{i} \times \dot{\theta}_{i+1}{ }^{i+1} \hat{\mathbf{z}}_{i+1}+\ddot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}, \\
& { }^{i+1} \dot{v}_{i+1}={ }_{i}^{i+1} R\left({ }^{i} \dot{\omega}_{i} \times{ }^{i} P_{i+1}+{ }^{i} \omega_{i} \times\left({ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+{ }^{i} \dot{v}_{i}\right), \\
& { }^{i+1} \dot{v}_{C_{i+1}}={ }^{i+1} \dot{\omega}_{i+1} \times{ }^{i+1} P_{C_{i+1}} \\
& +{ }^{i+1} \omega_{i+1} \times\left({ }^{i+1} \omega_{i+1} \times{ }^{i+1} P_{C_{i+1}}\right)+{ }^{i+1} \dot{v}_{i+1}, \\
& { }^{i+1} F_{i+1}=m_{i+1}{ }^{i+1} \dot{v}_{C_{i+1}} \text {, } \\
& { }^{i+1} N_{i+1}={ }^{C_{i+1}} I_{i+1}{ }^{i+1} \dot{\omega}_{i+1}+{ }^{i+1} \omega_{i+1} \times{ }^{C_{i+1}} I_{i+1}{ }^{i+1} \omega_{i+1} .
\end{aligned}
$$

Inward iterations: $i: 6 \rightarrow 1$

$$
\begin{aligned}
& { }^{i} f_{i}={ }_{i+1}^{i} R^{i+1} f_{i+1}+{ }^{i} F_{i}, \\
& { }^{i} n_{i}= \\
& ={ }^{i} N_{i}+{ }_{i+1}^{i} R{ }^{i+1} n_{i+1}+{ }^{i} P_{C_{i}} \times{ }^{i} F_{i} \\
& \quad \quad+{ }^{i} P_{i+1} \times{ }_{i+1}^{i} R^{i+1} f_{i+1}, \\
& \tau_{i}= \\
& { }^{i} n_{i}^{T}{ }^{i} \hat{Z}_{i} .
\end{aligned}
$$

Dynamics (R-MPC chapter 7)

The resulting dynamic equations can be written on the form (state-space equation):

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)+J^{T} f
$$

Dynamics (DLR)

$$
\tau=M(\Theta) \ddot{\Theta}+V(\Theta, \dot{\Theta})+G(\Theta)+J^{T} f
$$

German
 Aerospace Center

Dynamics (DLR)

4
German Aerospace Center

State of the art - industrial manipulation

Dynamics (DLR)

End-Effector Airbags for Accelerating Human-Robot Collaboration

