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Introduction to Robotics

DD2410 - Introduction to Robotics

Lecture 4 - Differential Kinematics & Dynamics




Schedule - Lectures

Sep 02 - 1. Intro, Course fundamentals, Topics, What is a Robot, History, Applications.
Sep 03 - 2 ROS Introduction (Scheduled as lab, will be in zoom only)

Sep 03 - 3 Manipulators, Kinematics

Sep 06 - 4. Differential kinematics, dynamics

Sep 08 - 5. Actuators, sensors | (force, torque, encoders, ...)
Sep 13 - 6. Grasping, Motion, Control

Sep 15 - 7. Planning (RRT, A*, ...)
Sep 20 - 8. Behavior Trees and Task Switching

Sep 22 - 9. Mobility and sensing Il (distance, vision, radio, GPS, ...)
Sep 27 - 10. Localisation (where are we?)

Sep 29 - 11. Mapping (how to build the map to localise/navigate w.r.t.?)
Oct 04 - 12. Navigation (how do | get from Ato B?)

Oct 06 - Q/A - Open questions to your teachers.




Overview

* Differential kinematics
— Jacobians
— Singularities
— Manipulability
— Calculations
* Dynamics

— Forces and accelerations

— algorithms for calculations




Differential kinematics

* For many operations, we are not interested in the
stationary kinematics, but rather the differential
kinematics, mainly for the mapping between velocities in
configuration space and cartesian space




Differential kinematics - Vacuum cleaner type
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Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

0K(0),

« Where each elementj in Jis defined as

50,




Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

« Where each elementj in Jis defined as o)
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Forward kinematics

« Transform °TE from end effector to base

frame is dependant on configuration ©

* The function that generates the end ' | PLT (o e
effector pose X given 0, is called forward
kinematics, K

Link 4

X = K(0), r="T p_

where p is the position of the endpoint in
the last frame

* Commonly, we defing/ K(©) to output the
pose vector X aBy],whereaBy
are the Euler Ang




Forward kinematics

« Transform °TE from end effector to base

frame is dependant on configuration ©
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Link 3

* The function that generates the end .
effector pose X given O, is called forward .| |
kinematics, K

X=k@.  r=Te, ] o

where p is the position of the endpoint in
the last frame

* Commonly, we define K(©) to output the > T.= t)
_ =\ 07 1
pose vector X =[x y z , where a By

are the Euler Angles

Link 4
(end-effector)

See R-MPC 2.4




Differential kinematics

* The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

X=J(0)6

0K (©),
50,

« Where each elementj inJis defined as

e« Thus, each column in J can be seen as the vector AXi, or

the motion in X caused by motion in the joint 6.




Differential kinematics

* The closed form of a typical manipulator Jacobian is not
printable




Differential kinematics
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* The closed form of a typical manipulator Jacobian is not

printable

The Puma 560 can be seen in Figures 1 and 2
The forward kinematics Ky can be formulated as:
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Where the latter uses shorthand. The full expression is:
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Differential kinematics (J.J. Craig chapter 5)

* The closed form of a typical manipulator Jacobian is often
not printable, but can be derived by sequential application
of frame transforms

* The motion of frame i+17, is a function of the motion of
frame i and the motion of the joint between them.




Differential kinematics (R-MPC chapter 3): Rotational joints
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Differential kinematics (R-MPC chapter 3) - Prismatic joints
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Differential kinematics (J.J. Craig chapter 5)

* Consequetive application of link transforms gives us
velocities in end effector frame

* Note: resulting velocities are multilinear in joint velocities!

« Multiplying by rotation transform BRE gives us velocities in
base frame

* Thus we can derive J(O)
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Example: Planar robot L6
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Jacobians (R-MPC 3.1.3)

X=J(0)O

 Column j in J is the contribution of the i:th joint to the
velocity of the end effector.

* Each column in J can be computed individually.



Jacobians (R-MPC 3.1.3)

X=J(©)O
X
>

 Column j in J is the contribution of t@éth joint to the
velocity of the end effector.

o
* Each columnin J ca%@%mputed individually.
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Example: Planar robot
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Example: Planar robot
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What happens if both angles are 0?

When the Jacobian loses rank, we
get a kinematic singularity - we lose
the ability to generate motion in
some direction!




Manipulability

* We can generalize this into a concept of manipulability w
Can't move much this way
ﬁ:ﬁhn"‘ / Can moaove a lot this way w=Y det (JJT)

w is proportional to the
volume of the manipulability
ellipsoid.
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ellipsoid manipulability ellipsoid




Manipulability

We can generalize this into a concept of manipulability w
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w=vdet(JJ")

w is proportional to the
volume of the manipulability
ellipsoid.




Manipulability example




Jacobians

* The inverse Jacobian is trivial to calculate, as long as the
Jacobian matrix is invertible.

* If Jis not invertible, we can often use pseudo-inverse
instead.




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics

O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)

* With linear approximation, we get
ex~J(0)eq




Jacobians for numerical inverse kinematics

* We want to find the inverse kinematics
O=K '(X)

* We start with an approximation

AN

O=0+¢,
X+e,=K(O+¢g)
K(®)+e;=K (O+€y)
* With linear approximation, we get (assuming invertible J)
EXNJ(("))E@
eo~J (O)e,



Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

AN

Given target X and initial approximation ®




Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

AN

Given target X and initial approximation ®

repeat

until €, <tolerance




Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(0)
QZX—X

until €, <tolerance




Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(®©)
EXZX X
€o=J 1(@)

until €, <tolerance




Jacobians for numerical inverse kinematics

* Algorithm for finding inverse kinematics

Given target X and initial approximation ®

repeat
X=K(®©)
€y = =X-X
e@:J](@)
O=0—c,

until €, <tolerance




Jacobians for static forces

* Virtual work must be same independent of coordinates

Flsy = 1780
* We remember that:
ox = J&B

* Which gives us:
Fry=+T
t=J'F




Jacobians for static forces

t=J'F

* We can now see that for singular configurations, there will
be directions where the required torque for a given force
goes to zero, or inversely, the forces generated by a
given torque tend to infinity. This may cause damage
to the robot or the environment.




Jacobians for static forces

t=J'F

* We can also calculate inverse kinematics by virtual forces
and torques. We apply a "force" correcting the end
effector position, calculate the torques this would
generate, and move the robot accordingly. This gives us
the update step:

e@=JT((:))eX

* This is useful when inverse of J does not exist, but
typically converges slower.




Dynamics (R-MPC Chapter 7)
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ﬁ%@}% Dynamics (R- MPC chapter 7) - Rotational joints
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58D, Dynamics (R-MPC chapter 7) - Prismatic joints
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Dynamics

Newton - Euler approach:

* Find the acceleration and velocity of each
joint, working outwards

* Find the necessary torque/force to generate
that acceleration, adding the external forces
and torques, working inwards




Dynamics
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Dynamics (R-MPC chapter 7)

The resulting dynamic equations can be written on the
form (state-space equation):

T = M(O)® + V(0,0) + G(O) + J'f




Dynamics (DLR)

1=M(0)0+V (0,0)+G(0)+Jf



Dynamics (DLR)
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Dynamics (DLR)

German

Aerospace
DLR _Center




State of the art - industrial manipulation




Dynamics (DLR)

End-Effector Airbags for Accelerating

Human-Robot Collaboration




