
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Introduction to Robotics
DD2410 - Introduction to Robotics

Lecture 4 - Differential Kinematics & Dynamics

2

Schedule - Lectures

Sep 02 - 1. Intro, Course fundamentals, Topics, What is a Robot, History, Applications.

Sep 03 - 2 ROS Introduction (Scheduled as lab, will be in zoom only)

Sep 03 - 3 Manipulators, Kinematics
Sep 06 - 4. Differential kinematics, dynamics
Sep 08 - 5. Actuators, sensors I (force, torque, encoders, ...)
Sep 13 - 6. Grasping, Motion, Control

Sep 15 - 7. Planning (RRT, A*, ...)
Sep 20 - 8. Behavior Trees and Task Switching

Sep 22 - 9. Mobility and sensing II (distance, vision, radio, GPS, ...)
Sep 27 - 10. Localisation (where are we?)
Sep 29 - 11. Mapping (how to build the map to localise/navigate w.r.t.?)
Oct 04 - 12. Navigation (how do I get from A to B?)

Oct 06 - Q/A - Open questions to your teachers.

4

● Differential kinematics

– Jacobians

– Singularities

– Manipulability

– Calculations

● Dynamics

– Forces and accelerations

– algorithms for calculations

Overview

5

● For many operations, we are not interested in the
stationary kinematics, but rather the differential
kinematics, mainly for the mapping between velocities in
configuration space and cartesian space

Differential kinematics

6

 . .

Differential kinematics - Vacuum cleaner type

7

● The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

● Where each element j
mn

 in J is defined as

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂Θn

8

● The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

● Where each element j
mn

 in J is defined as

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂Θn

9

Forward kinematics

● Transform
0
T

E
 from end effector to base

frame is dependant on configuration Θ

● The function that generates the end
effector pose X given Θ, is called forward
kinematics, K

 X = K(Θ), r =
0
T

E
p

E

where p is the position of the endpoint in
the last frame

● Commonly, we define K(Θ) to output the
pose vector X = [x y z α β γ]

T
, where α β γ

are the Euler Angles

10

Forward kinematics

● Transform
0
T

E
 from end effector to base

frame is dependant on configuration Θ

● The function that generates the end
effector pose X given Θ, is called forward
kinematics, K

 X = K(Θ), r =
0
T

E
p

E

where p is the position of the endpoint in
the last frame

● Commonly, we define K(Θ) to output the
pose vector X = [x y z α β γ]

T
, where α β γ

are the Euler Angles

 0TE=

See R-MPC 2.4

11

● The instantaneous transform between velocities in robot
configuration space and cartesian space is given by the
Jacobian:

● Where each element j
mn

 in J is defined as

● Thus, each column in J can be seen as the vector ΔX
i
, or

the motion in X caused by motion in the joint θ
i
.

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂θn

12

● The closed form of a typical manipulator Jacobian is not
printable

Differential kinematics

13

● The closed form of a typical manipulator Jacobian is not
printable

Differential kinematics

14

● The closed form of a typical manipulator Jacobian is often
not printable, but can be derived by sequential application
of frame transforms

● The motion of frame i+1, is a function of the motion of
frame i and the motion of the joint between them.

Differential kinematics (J.J. Craig chapter 5)

15

Differential kinematics (R-MPC chapter 3): Rotational joints

16

Differential kinematics (R-MPC chapter 3) - Prismatic joints

17

● Consequetive application of link transforms gives us
velocities in end effector frame

● Note: resulting velocities are multilinear in joint velocities!

● Multiplying by rotation transform
B
R

E
 gives us velocities in

base frame

● Thus we can derive J(Θ)

Differential kinematics (J.J. Craig chapter 5)

18

Example: Planar robot

19

Example: Planar robot

20

X = J()

● Column j
i
 in J is the contribution of the i:th joint to the

velocity of the end effector.

● Each column in J can be computed individually.

Jacobians (R-MPC 3.1.3)

Θ Θ̇
.

21

X = J()

● Column j
i
 in J is the contribution of the i:th joint to the

velocity of the end effector.

● Each column in J can be computed individually.

Jacobians (R-MPC 3.1.3)

Θ Θ̇
.

Ass
ignment 2

: s
eco

nd part

22

Example: Planar robot

What happens if both angles are 0?

23

Example: Planar robot

.
 X

What happens if both angles are 0?

When the Jacobian loses rank, we
get a kinematic singularity - we lose
the ability to generate motion in
some direction!

θ
1

θ
2

.

.

24

Manipulability

● We can generalize this into a concept of manipulability w

 w is proportional to the
 volume of the manipulability

 ellipsoid.

w=√det (JJ T)

Tsuneo Yoshikawa, "Manipulability of Robotic Mechanisms" The International Journal of Robotics
Research Vol 4, Issue 2, pp. 3 - 9, June 1, 1985

25

Manipulability

● We can generalize this into a concept of manipulability w

 w is proportional to the
 volume of the manipulability

 ellipsoid.

w=√det (JJ T)

26

Manipulability example

Image: Trossen Robotics

27

● The inverse Jacobian is trivial to calculate, as long as the
Jacobian matrix is invertible.

● If J is not invertible, we can often use pseudo-inverse
instead.

Jacobians

28

● We want to find the inverse kinematics

Jacobians for numerical inverse kinematics

Θ=K−1
(X)

29

● We want to find the inverse kinematics

● We start with an approximation

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X)

30

● We want to find the inverse kinematics

● We start with an approximation

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X)

X+ϵX=K (Θ+ϵΘ)

31

● We want to find the inverse kinematics

● We start with an approximation

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X)

K (Θ)+ϵX=K (Θ+ϵΘ)

X+ϵX=K (Θ+ϵΘ)

32

● We want to find the inverse kinematics

● We start with an approximation

● With linear approximation, we get

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X)

ϵX≈J (Θ)ϵΘ

K (Θ)+ϵX=K (Θ+ϵΘ)

X+ϵX=K (Θ+ϵΘ)

33

● We want to find the inverse kinematics

● We start with an approximation

● With linear approximation, we get (assuming invertible J)

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X)

ϵX≈J (Θ)ϵΘ

K (Θ)+ϵX=K (Θ+ϵΘ)

ϵΘ≈J
−1

(Θ)ϵX

X+ϵX=K (Θ+ϵΘ)

34

● Algorithm for finding inverse kinematics

Given target X and initial approximation

Jacobians for numerical inverse kinematics

Θ̂

35

● Algorithm for finding inverse kinematics

Given target X and initial approximation

repeat

until

Jacobians for numerical inverse kinematics

Θ̂

X̂=K (Θ̂)

ϵX⩽tolerance

36

● Algorithm for finding inverse kinematics

Given target X and initial approximation

repeat

until

Jacobians for numerical inverse kinematics

Θ̂

X̂=K (Θ̂)

ϵX⩽tolerance

ϵX=X̂−X

37

● Algorithm for finding inverse kinematics

Given target X and initial approximation

repeat

until

Jacobians for numerical inverse kinematics

Θ̂

X̂=K (Θ̂)

ϵΘ=J
−1

(Θ̂)ϵx

ϵX⩽tolerance

ϵX=X̂−X

38

● Algorithm for finding inverse kinematics

Given target X and initial approximation

repeat

until

Jacobians for numerical inverse kinematics

Θ̂

Θ̂=Θ̂−ϵΘ

X̂=K (Θ̂)

ϵΘ=J
−1

(Θ̂)ϵx

ϵX⩽tolerance

ϵX=X̂−X

39

● Virtual work must be same independent of coordinates

● We remember that:

● Which gives us:

Jacobians for static forces

40

● We can now see that for singular configurations, there will
be directions where the required torque for a given force
goes to zero, or inversely, the forces generated by a
given torque tend to infinity. This may cause damage
to the robot or the environment.

Jacobians for static forces

41

● We can also calculate inverse kinematics by virtual forces
and torques. We apply a "force" correcting the end
effector position, calculate the torques this would
generate, and move the robot accordingly. This gives us
the update step:

● This is useful when inverse of J does not exist, but
typically converges slower.

Jacobians for static forces

ϵΘ=J
T
(Θ̂)ϵx

42

Dynamics (R-MPC Chapter 7)

43

Dynamics (R- MPC chapter 7) - Rotational joints

.

44

Dynamics (R-MPC chapter 7) - Prismatic joints

45

Dynamics

Newton - Euler approach:

● Find the acceleration and velocity of each
joint, working outwards

● Find the necessary torque/force to generate
that acceleration, adding the external forces
and torques, working inwards

46

Dynamics

47

Dynamics (R-MPC chapter 7)

The resulting dynamic equations can be written on the
form (state-space equation):

τ = M (Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) + JT f

53

Dynamics (DLR)

τ=M (Θ)Θ̈+V (Θ ,Θ̇)+G (Θ)+J T f

54

Dynamics (DLR)

55

Dynamics (DLR)

State of the art - industrial manipulation

57

Dynamics (DLR)

