DD2410

Lecture slides Mapping and SLAM

Localization problem a la Bayes

Prediction based on control input / odometry, u_k:

 $p(\mathbf{x}_{k+1}|\mathbf{Z}_k,\mathbf{U}_{k+1}) = \int p(\mathbf{x}_{k+1}|\mathbf{u}_{k+1,k}\mathbf{x}_k) \ p(\mathbf{x}_k|\mathbf{Z}_k,\mathbf{U}_k) \ d\mathbf{x}_k$ where $\mathbf{p}(\mathbf{x}_{k+1}|\mathbf{u}_{k+1,k}\mathbf{x}_k)$ is the motion model often given by odometry

 \rightarrow distribution smeared out (uncertainty increases)

Update with new measurement z_{k+1} : $p(x_{k+1}|Z_{k+1}, U_{k+1}) = \eta p(z_{k+1}|x_{k+1})p(x_{k+1}|Z_k, U_{k+1})$ where $p(z_{k+1}|x_{k+1})$ is the measurement model \rightarrow distribution more peaked (uncertainty decreases)

Patric Jensfelt

DD2410

Extended Kalman Filter (EKF)

- Initialize
 - $-x_{0|0} = best guess about state (here pose)$
 - $P_{0|0}$ = covariance ("uncertainty") in initial state guess
- Repeat
 - Predict
 - $x_{k+1|k} = f(x_{k|k}, u_{k+1})$
 - $P_{k+1|k} = A_k P_{k|k} A_k^T + W_k Q_k W_k^T$
 - Update
 - $K_k = P_{k+1|k}H_k(H_kP_{k+1|k}H_k^T + V_kR_kV_k^T)^{-1}$
 - $x_{k+1|k+1} = x_{k+1|k} + K_k(z_{k+1} h(x_{k+1|k}))$
 - $P_{k+1|k+1} = (I K_k H_k) P_{k+1|k}$

Covariance matrix (P on last slide)

- What is it?
- What does it tell us?
- Give examples

Covariance matrix for this data?

https://datascienceplus.com/understanding-the-covariance-matrix/

Covariance matrix for this data?

Covariance matrix for this data?

DD2410

- Covariance matrix for this data?
- What does it say about how new information about x will influence y?

Ex: EKF in 1D

DD2410

Ex: EKF in 1D

DD2410

Ex: EKF in 1D

- Initialize: $x_{0|0} = x0$, $P_{0|0} = small$ (if we know the init pos) • Predict
 - $-x_{k+1|k} = x_k + v_k dT$ The noise increases the uncertainty but does $-P_{k+1|k} = P_{k|k} + Q_k$ not effect the mean as we assume zero-mean noise
- Update

$$-K_{k} = P_{k+1|k}(P_{k+1|k} + R_{k})^{-1} = P_{k+1|k} / (P_{k+1|k} + R_{k})$$

- $x_{k+1|k+1} = x_{k+1|k} + K_k(z_{k+1} x_{k+1|k})$
- $P_{k+1|k+1} = (1 K_k)P_{k+1|k}$

Gauss vs particle set

- Green ellipse: 2D Gaussian
- Black dots: Samples of the same distribution

Patric Jensfelt

DD2410

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Particle filter

The particle filter represents probability distributions using a set of particles, p_k , sampled from the distribution.

Each particle represents one "hypothesis" about the state.

Each particle also has a weight, initialized as $\pi = 1/N$.

 $p_k = \{x_k, \pi_k\}$

particle state weight

Monte Carlo Localizatio (MCL)

- Initialize the particles given what you know to start with (nothing→uniform, a lot→ very small spread) and with weight 1/N.
- 2. Use odometry to update all poses of particles and perturb each particle according to odomety noise (different realization of noise for each particle).
- 3. Use measurements and multiply the weight of each particle, i, with $p(z_k|x_k^i)$
- 4. Re-sample "if needed" and then return to 1.

Mapping and SLAM

Difference?

Mapping and SLAM

- Mapping
 - Position is assumed know and the focus is on building the map
- SLAM = Simultaneous Localization and Mapping
 - Neither position nor map known, need to estimate both at the same time

Example: mapping

Assignment 4!

Lecture

Example: mapping

Patric Jensfelt

DD2410

SLAM

Simultaneous Localization and Mapping

- Chicken and egg problem!
- Need map to localize
- Need posiotion to build map
- Do localization and mapping in parallell!

Example SLAM: Elastic Fusion

Lab dataset (Real-time)

DD2410

https://www.youtube.com/watch?v=XySrhZpODYs

From Localization to SLAM

• How to extend EKF and PF?

Study EKFSLAM

- Extend state
- Correlation between robot pos and landmark (suggest experiment)
- Loop closure (suggest experiment)

Practical issues with EKF SLAM

- Computational complexity O(N²) (N=nbr landmarks)
- Sensitive to outliers
- How to define landmarks? Need to know that I can find them in the environment I operate in

• ...

Particile filter SLAM

- Particle filter cannot handle the number states needed for SLAM
- Use Rao-Blackwellization!
- Factor distribution into position part and map part
 - Particle filter tracks position
 - EKF or other map technique handles map

Example: Particle filter SLAM

https://www.youtube.com/watch?v=jBPZIU6AIS0

DD2410

2D SLAM in ROS: gMapping

https://www.youtube.com/watch?v=uXDYc5jziag

- Used in almost all approaches now
- Idea:
 - Build a graph where
 - the nodes corresponds to robot poses and map entities and
 - edges are relative pose estimates (constraints) between nodes
 - Optimize the graph so as to minimize the "energy" in the graph
- The constraints can be seen as springs whose zero energy state corresponds to the relative pose estimate.
 - Changing the relative pose between nodes costs energy
 - The more certain the relative pose is, the stiffer the spring

Example: Graph based SLAM

Example: Graph based 3D SLAM

https://www.youtube.com/watch?v=08GTGfNneCI

Typical setup

- Front-end
 - Produces new nodes and edges
 - Does its best to reduce drift
 - Runs in real-time
- Back-end
 - Optimizes the graph in the background
 - Slower than real-time but online

Front-end

Today in research often vision based - visual odometry

Back-end

- Many packages to chose from
 - g2o (<u>https://github.com/RainerKuemmerle/g2o</u>)
 - gtsam (<u>https://bitbucket.org/gtborg/gtsam</u>)
 - Google ceres (<u>http://ceres-solver.org</u>)

Example: ORBSLAM2

https://www.youtube.com/watch?v=GByPKZDnG3Y

Example: GCNv2

https://github.com/jiexiong2016/GCNv2_SLAM https://www.youtube.com/watch?v=pz-gdnR9tAM Patric Jensfelt DD2410

Example: GCNv2

Notice how the GCNv2 features have a more even distribution of features than ORB Can run ORBSLAM2 with GCNv2 on Jetson TX2 https://github.com/jiexiong2016/GCNv2_SLAM

A word on monocular vision

- The "holy grail" of SLAM
- With a single camera one cannot determine the scale of the scene (distances)

