Products in cohomology

Greg Arone

November 11, 2021

Tensor product of complexes

Definition

Let A^{\bullet}, B^{\bullet} be (co)chain complexes. We define their tensor product
$(A \otimes B)^{\bullet}$ as follows. In degree n,

$$
(A \otimes B)^{n}=\bigoplus_{i+j=n} A^{i} \otimes B^{j}
$$

The differential is defined as follows. Let $a^{m} \in A^{m}, b^{n} \in B^{n}$. Then

$$
d\left(a^{m} \otimes b^{n}\right)=d_{A}\left(a^{m}\right) \otimes b^{n}+(-1)^{m} a^{m} \otimes d_{B}\left(b^{n}\right)
$$

Similarly we define the tensor product of graded abelian groups, such as $H^{*}(X) \otimes H^{*}(Y)$.

Algebraic Kunneth theorem

Theorem

Suppose A^{\bullet}, B^{\bullet} are chain complexes of free R-modules. There is a natural homomorphism:

$$
H^{*}(A) \otimes_{R} H^{*}(B) \rightarrow H^{*}(A \otimes B) .
$$

This homomorphism is an isomorphism if A^{\bullet} is a chain complex of free R-modules, and $H^{n}(A)$ is also a free R-module for every n.

Topology

Let X, Y be topological spaces. Let \mathcal{U}, \mathcal{V} be open covers of X and Y respectively. Let $\mathcal{U} \times \mathcal{V}$ be the open cover of $X \times Y$ consisting of all products of elements of \mathcal{U} and \mathcal{V}. Notice that there is a homomorphism

$$
\begin{array}{rlll}
C_{\mathcal{U}}^{0}(X ; A) \otimes C_{\mathcal{V}}^{0}(Y ; B) & \rightarrow & C_{\mathcal{U} \times \mathcal{V}}^{0}(X \times Y ; A \otimes B) \\
\prod_{U \in \mathcal{U}} A^{U} \otimes \prod_{V \in \mathcal{V}} B^{V} & \rightarrow & \prod_{\mathcal{U} \times \mathcal{V}}(A \otimes B)^{U \times V} \\
(f: U \rightarrow A) \otimes(g: V \rightarrow B) & \rightarrow & f \otimes g: U \times V \rightarrow A \otimes B
\end{array}
$$

It turns out, that this homomorphism can be extended to a map of chain complexes

Theorem

There exists a natural homomorphism - in fact a chain homotopy equivalence

$$
C_{\mathcal{U}}^{*}(X, A) \otimes C_{\mathcal{V}}^{*}(Y, B) \rightarrow C_{\mathcal{U} \times \mathcal{V}}^{*}(X \times Y ; A \otimes B)
$$

The Kunneth formula

The chain homomorphism induces a natural homomorphism

$$
\check{\mathrm{H}}^{*}(X, A) \otimes \check{\mathrm{H}}^{*}(Y, B) \rightarrow \check{\mathrm{H}}^{*}(X \times Y ; A \otimes B)
$$

In particular, if $A=B=R$ is a ring, one gets a homomorphism

$$
\check{\mathrm{H}}^{*}(X, R) \otimes_{R} \check{\mathrm{H}}^{*}(Y, R) \rightarrow \check{\mathrm{H}}^{*}(X \times Y ; R)
$$

Theorem
This homomorphism is an isomorphism if, for example, X is a CW complex with finitely many cells in each dimension, and $\mathrm{H}^{*}(X, R)$ is a free R-module (or more generally, flat).

Internal ring structure on cohomology

Suppose X is a space and R is a commutative ring. Then we have natural homomorphisms

$$
\check{\mathrm{H}}^{*}(X, R) \otimes_{R} \check{\mathrm{H}}^{*}(X, R) \rightarrow \check{\mathrm{H}}^{*}(X \times X ; R) \rightarrow \check{\mathrm{H}}^{*}(X, R) .
$$

This endows $\check{\mathrm{H}}^{*}(X, R)$ with the structure of a graded commutative ring. For whatever historical reasons, the multiplication in cohomology is denoted by the symbol U , and is called "cup product".
Example

$$
\begin{aligned}
\check{\mathrm{H}}^{*}\left(S^{m} \times S^{n}, \mathbb{Z}\right) & \cong \mathbb{Z}\left[u_{m}, u_{n}\right] /\left(u_{m}^{2}, u_{n}^{2}\right) \\
\check{\mathrm{H}}^{*}\left(\mathbb{C} P^{n}, \mathbb{Z}\right) & \cong \mathbb{Z}\left[u_{2}\right] /\left(u_{2}^{n+1}\right) . \\
\check{\mathrm{H}}^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) & \cong \mathbb{Z} / 2[x] /\left(x^{n+1}\right) .
\end{aligned}
$$

Using Gysin to calculate $H^{*}\left(\mathbb{C} P^{n}\right)$ and $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right)$
The space $\mathbb{C} P^{n}$ fits in a principal $U(1)$-fibration

$$
S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}
$$

Notice that it is a sphere bundle. In fact, one can identify $S^{2 n+1}$ with the sphere bundle of the vector bundle

$$
S^{2 n+1} \times U_{(1)} \mathbb{C} \rightarrow S^{2 n+1} / U_{(1)}=\mathbb{C} P^{n} .
$$

This is an orientable bundle, because $U(1) \subset S O(2)$. Therefore it has an Euler class $u \in H^{2}\left(\mathbb{C} P^{n}\right)$. The Gysin sequence has the following form

$$
\cdots \rightarrow H^{i-2}\left(\mathbb{C} P^{n}\right) \xrightarrow{u} H^{i}\left(\mathbb{C} P^{n}\right) \rightarrow H^{i}\left(S^{2 n+1}\right) \rightarrow H^{i-1}\left(\mathbb{C} P^{n}\right) \rightarrow \cdots
$$

It follows that multiplication by u induces isomorphisms

$$
H^{0}\left(\mathbb{C} P^{n}\right) \stackrel{\cong}{\rightrightarrows} H^{2}\left(\mathbb{C} P^{n}\right) \stackrel{\cong}{\rightrightarrows} \cdots \xrightarrow{H^{2 n}}\left(\mathbb{C} P^{n}\right)
$$

And therefore $H^{*}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}[u] /\left(u^{n+1}\right)$.

Applications: The Borsuk-Ulam theorem, non-existance of division algebra structure on \mathbb{R}^{n} for $n \neq 2^{k}$.

