Cech and sheaf cohomology

Greg Arone

November 11, 2021

An example of Cech cohomology

As usual, let I = [0, 1]. Let us calculate $\check{H}^*(I, A)$. Consider the cover $\mathcal{U} = \{[0, \frac{3}{4}), (\frac{1}{2}, 1]\}$. The groups $\check{H}^*_{\mathcal{U}}(I; A)$ are calculated by the following complex:

Now let $U = \{[0, b_1), (a_2, b_2), \dots, (a_n, 1]\}$, where for each k, $a_k < b_{k-1} < a_{k+1}$. Then the Cech complex has the following form

Every open cover of *I* has a refinement of this type. From here one can easily reach the (unsurprising) conclusion:

$$\check{\mathrm{H}}^n(I;A) = \begin{cases} A & n=0\\ 0 & n>0 \end{cases}$$

Homotopy invariance

"Similarly" to our calculation of $\check{\mathrm{H}}^n(I;A)$, one can prove the following

Lemma

Let X be a paracompact space. The canonical inclusions $i_0, i_1: X \hookrightarrow X \times I$ induce isomorphisms (which are necessarily the same)

$$i_0^*, i_1^* \colon \check{\mathrm{H}}^*(X \times I; A) \xrightarrow{\cong} \check{\mathrm{H}}^*(X; A).$$

As a consequence we have the following important theorem

Theorem (Homotopy invariance)

Let $f, g: X \to Y$ be homotopic maps between paracompact spaces. Then they induce the same homomorphism

$$\check{\mathrm{H}}^*(Y;A) \to \check{\mathrm{H}}^*(X;A).$$

The Mayer-Vietoris sequence

Suppose $X = U_1 \cup U_2$, where U_i are open subsets. There is a LES

$$\begin{array}{rcl} 0 & \rightarrow & \check{\mathrm{H}}^{0}(X;A) & \xrightarrow{(l_{1}^{0},l_{2}^{0})} & \check{\mathrm{H}}^{0}(U_{1};A) \oplus \check{\mathrm{H}}^{0}(U_{2};A) & \xrightarrow{(l_{1}^{0}-j_{2}^{0})} & \check{\mathrm{H}}^{0}(U_{1}\cap U_{2};A) & \rightarrow \\ & \rightarrow & \check{\mathrm{H}}^{1}(X;A) & \xrightarrow{(l_{1}^{1},l_{2}^{1})} & \check{\mathrm{H}}^{1}(U_{1};A) \oplus \check{\mathrm{H}}^{1}(U_{2};A) & \xrightarrow{(l_{1}^{1}-l_{2}^{1})} & \check{\mathrm{H}}^{1}(U_{1}\cap U_{2};A) & \cdots \end{array}$$

Proof: A denotes an abelian group, and also the sheaf represented by A: $O \mapsto A^O$. Let $A_1 = i_1^* i_{1!} A$ be the sheaf $O \mapsto A^{O \cap U}$. Def. A_2 , A_{12} similarly. We get a sort of exact sequence of presheaves:

$$0 \rightarrow A \xrightarrow{(i_1,i_2)} A_1 \oplus A_2 \xrightarrow{j_1-j_2} A_{12} (\dashrightarrow 0).$$

This is a *left exact* sequence of presheaves and it is short exact when evaluated on a set O that is contained either in U_1 or in U_2 . It follows that if O is an open cover of X, that is subordinate to $\{U_1, U_2\}$, there is a short exact sequence of Cech complexes

$$0 \rightarrow C^*_{\mathcal{O}}(X;A) \xrightarrow{(i_1^*, i_2^*)} C^*_{\mathcal{O}}(U_1;A) \oplus C^*_{\mathcal{O}}(U_2;A) \xrightarrow{j_1^* - j_2^*} C^*_{\mathcal{O}}(U_1 \cap U_2;A) \rightarrow 0.$$

From here we get a LES of cohomology groups $\check{\mathrm{H}}^*_{\mathcal{O}}(-; A)$. The poset of subordinate open covers is cofinal, so passing to colimits we obtain a LES of cech cohomology groups

Examples

Using homotopy invariance, the Mayer-Vietoris sequence, and induction, one can easily calculate the cohomology groups of a sphere:

$$\check{\operatorname{H}}^n(S^d;A) = \left\{ egin{array}{cc} A & n=0, \; ext{or} \; d \ 0 & ext{otherwise} \end{array}
ight.$$

Remark

It is often convenient to consider reduced cohomology:

$$\widetilde{\mathrm{H}}^*(X; A) := \operatorname{\mathsf{ker}}\left(\check{\mathrm{H}}^*(X; A) \to \check{\mathrm{H}}^*(*; A)\right).$$

Reduced cohomology is almost the same as unreduced cohomology, except that it knocks of a factor of A in degree zero. For example $\widetilde{H}^*(*; A) = 0$, and $\widetilde{H}^*(S^d; A)$ only has a copy of A in degree d.

The cohomology of *CW-complexes* is often tractable. Let X be a CW-complex. For each d, let X^d be the d-skeleton of X. Thus X is filtered by subspaces $X^{d-1} \subset X^d \subset \cdots$. Let C_n be the set of *n*-dimensional cells of X.

Lemma

For each d, there is a long exact sequence

$$\cdots \to \check{\mathrm{H}}^{n}(X^{d}; A) \to \check{\mathrm{H}}^{n}(X^{d-1}; A) \to \widetilde{\mathrm{H}}^{n}(S^{d-1}; A)^{C_{d}} \to \check{\mathrm{H}}^{n+1}(X^{d}; A) \cdots$$

In fact, one can organize things even better by splicing the exact sequences. One obtains a chain complex of the following form

$$A^{C_0} \rightarrow A^{C_2} \rightarrow \cdots \rightarrow A^{C_d} \rightarrow \cdots$$

This is called the *cellular chain* complex of X. Its cohomology is isomorphic to the cech cohomology (or any other cohomology satisfying the Eilenberg-Steenrod axioms).

Example: projective spaces

The complex projective space $\mathbb{C}P^n$ is obtained from $\mathbb{C}P^{n-1}$ by attaching a cell of dimension 2n. Thus $\mathbb{C}P^n$ has a cell structure with a single cell in each even dimension. It follows immediately that the cohomology of $\mathbb{C}P^n$ is given by the following formula:

$$\check{\mathrm{H}}^{i}(\mathbb{C}P^{n};A) = \begin{cases} A & i = 2l \leq 2n \\ 0 & \text{otherwise} \end{cases}$$

The real projective space requires a little more work. The space $\mathbb{R}P^n$ is obtained by attaching a cell of dimension n to $\mathbb{R}P^{n-1}$. Thus $\mathbb{R}P^n$ has a cell structure with a single cell in each dimension. It follows that the cellular chain complex of $\mathbb{R}P^n$ has the following form

Lemma

dⁱ is multiplication by 2 for odd i and is zero for even i.

products

The lemma about the cohomology of $X \times I$ is a special case of a general result about the cohomology of products. Before we state the result, let us review tensor products of complexes.

Definition

Let A^{\bullet}, B^{\bullet} be (co)chain complexes. We define their tensor product $(A \otimes B)^{\bullet}$ as follows. In degree n,

$$(A\otimes B)^n=\bigoplus_{i+j=n}A^i\otimes B^j.$$

The differential is defined as follows. Let $a^m \in A^m, b^n \in B^n$. Then

$$d(a^m\otimes b^n)=d_A(a^m)\otimes b^n+(-1)^ma^m\otimes d_B(b^n).$$

Similarly we define the tensor product of graded abelian groups, such as $H^*(X) \otimes H^*(Y)$.

Algebraic Kunneth theorem

Theorem

Suppose A^{\bullet} , B^{\bullet} are chain complexes of free *R*-modules. There is a natural homomorphism:

$$H^*(A) \otimes_R H^*(B) \to H^*(A \otimes B).$$

This homomorphism is an isomorphism if A^{\bullet} is a chain complex of free *R*-modules, and $H^{n}(A)$ is also a free *R*-module for every *n*.

Topology

Let X, Y be topological spaces. Let \mathcal{U}, \mathcal{V} be open covers of X and Y respectively. Let $\mathcal{U} \times \mathcal{V}$ be the open cover of $X \times Y$ consisting of all products of elements of \mathcal{U} and \mathcal{V} . Notice that there is a homomorphism

$$C^0_{\mathcal{U}}(X;A)\otimes C^0_{\mathcal{V}}(Y;B)
ightarrow C^0_{\mathcal{U} imes \mathcal{V}}(X imes Y;A\otimes B)$$

The homomorphism sends a pair of functions $(f: U \to A) \otimes (g: V \to A)$ to the function $f \otimes g: U \times V \to A \otimes B$. It turns out, that this homomorphism can be extended to a map of chain complexes

Theorem

There exists a natural homomorphism - in fact a chain homotopy equivalence

$$C^*_{\mathcal{U}}(X,A)\otimes C^*_{\mathcal{V}}(Y,B) \to C^*_{\mathcal{U}\times\mathcal{V}}(X\times Y;A\otimes B).$$

The Kunneth formula

The chain homomorphism induces a natural homomorphism

$$\check{\mathrm{H}}^*(X,A)\otimes\check{\mathrm{H}}^*(Y,B)\to\check{\mathrm{H}}^*(X\times Y;A\otimes B).$$

In particular, if A = B = R is a ring, one gets a homomorphism

$$\check{\mathrm{H}}^*(X,R)\otimes_R\check{\mathrm{H}}^*(Y,R)\to\check{\mathrm{H}}^*(X\times Y;R).$$

Theorem

This homomorphism is an isomorphism if, for example, X is a CW complex with finitely many cells in each dimension, and $\check{H}^*(X, R)$ is a free R-module (or more generally, flat).

Internal ring structure on cohomology

Suppose X is a space and R is a commutative ring. Then we have natural homomorphisms

 $\check{\mathrm{H}}^*(X,R)\otimes_R\check{\mathrm{H}}^*(X,R)\to\check{\mathrm{H}}^*(X\times X;R)\to\check{\mathrm{H}}^*(X,R).$

This endows $\check{\mathrm{H}}^*(X, R)$ with the structure of a graded commutative ring. For whatever historical reasons, the multiplication in cohomology is denoted by the symbol \cup , and is called "cup product".

Example

$$\begin{split} \check{\mathrm{H}}^*(S^m \times S^n, \mathbb{Z}) &\cong \mathbb{Z}[u_m, u_n]/(u_m^2, u_n^2) \\ \check{\mathrm{H}}^*(\mathbb{C}P^n, \mathbb{Z}) &\cong \mathbb{Z}[u_2]/(u_2^{n+1}). \\ \check{\mathrm{H}}^*(\mathbb{R}P^n, \mathbb{Z}/2) &\cong \mathbb{Z}[x]/(x^{n+1}). \end{split}$$

Applications: The Borsuk-Ulam theorem, non-existance of division algebra structure on \mathbb{R}^n for $n \neq 2^k$.