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An example of Cech cohomology
As usual, let / = [0,1]. Let us calculate FI*(/, A). Consider the
cover U = {[0, %), (%, 1]}. The groups T}, (/; A) are calculated by

the following complex:

n 0 1 2
n [1771]

G, AdA —= A — 0
H, A 0 0

Now let U = {[0, b1), (a2, b2), ..., (an, 1]}, where for each k,
ak < bx_1 < agy1. Then the Cech complex has the following form

n 0 1 2
G AT — AL 0
oy, A 0 0

Every open cover of | has a refinement of this type. From here one
can easily reach the (unsurprising) conclusion:

. A n=0
H(r:4) = { 0 n>0



Homotopy invariance

“Similarly” to our calculation of fI”(I; A), one can prove the
following

Lemma
Let X be a paracompact space. The canonical inclusions

io, 12 X = X x | induce isomorphisms (which are necessarily the
same)

g, i HE (X x 1 A) = H*(X; A).
As a consequence we have the following important theorem

Theorem (Homotopy invariance)

Let f,g: X — Y be homotopic maps between paracompact
spaces. Then they induce the same homomorphism

H*(Y; A) — H*(X; A).



The Mayer-Vietoris sequence
Suppose X = Uy U Us, where U; are open subsets. There is a LES
0 — HUX;A) M HO(Us; A) @ HO(Uz; A) M HO(Uy N U A)  —
— HY(X;A) ii)» HY(Ur; A) @ T (Uo; A) M H(U;y N Us; A)
Proof: A denotes an abelian group, and also the sheaf represented
by A: O~ AC. Let A; = ifi1 A be the sheaf O — AP Def.
Ao, A1o similarly. We get a sort of exact sequence of presheaves:

0 AW A g, 272 AL 0).

This is a left exact sequence of presheaves and it is short exact
when evaluated on a set O that is contained either in U; or in Us.
It follows that if O is an open cover of X, that is subordinate to
{U1, Uz}, there is a short exact sequence of Cech complexes

(i15i3) it =i
0— 35 (X;A)——25 C2y (U A)® Cly (Ui A) ——=2 CJs (UrNUa; A)—0.

From here we get a LES of cohomology groups IZI?)(—; A). The
poset of subordinate open covers is cofinal, so passing to colimits
we obtain a LES of cech cohomology groups



Examples

Using homotopy invariance, the Mayer-Vietoris sequence, and
induction, one can easily calculate the cohomology groups of a
sphere:

. A n=0, ord

H"(S9; A) = o

( ) 0  otherwise

Remark
It is often convenient to consider reduced cohomology:

H*(X; A) == ker (IT"(X; A) — T*(x; A)) .

Reduced cohomology is almost the same as unreduced cohomology,
except that it knocks of a factor of A in degree zero. For example
H*(%; A) = 0, and H*(S59; A) only has a copy of A in degree d.



The cohomology of CW-complexes is often tractable. Let X be a
CW-complex. For each d, let X9 be the d-skeleton of X. Thus X
is filtered by subspaces X9~1 ¢ X9 C ---. Let C, be the set of
n-dimensional cells of X.

Lemma
For each d, there is a long exact sequence

co = HO(XY A) = HO(XOTH A) = H(STH A = (XD A) -
In fact, one can organize things even better by splicing the exact
sequences. One obtains a chain complex of the following form

AC 5 AQ 5 AC

This is called the cellular chain complex of X. Its cohomology is
isomorphic to the cech cohomology (or any other cohomology
satisfying the Eilenberg-Steenrod axioms).



Example: projective spaces

The complex projective space CP" is obtained from CP"~! by
attaching a cell of dimension 2n. Thus CP" has a cell structure
with a single cell in each even dimension. It follows immediately
that the cohomology of CP" is given by the following formula:

o A i=2/<2n
H'(CP": A) = =

(CP%A) { 0 otherwise
The real projective space requires a little more work. The space
RP" is obtained by attaching a cell of dimension n to RP"1.
Thus RP™ has a cell structure with a single cell in each dimension.
It follows that the cellular chain complex of RP” has the following

form
n

0 1 2
R N LN

Lemma
d' is multiplication by 2 for odd i and is zero for even i.



products

The lemma about the cohomology of X x [ is a special case of a
general result about the cohomology of products. Before we state
the result, let us review tensor products of complexes.

Definition
Let A®, B® be (co)chain complexes. We define their tensor product
(A® B)*® as follows. In degree n,

(AoB)"= P AwB.
i+j=n

The differential is defined as follows. Let a™ € A™, b" € B". Then
d(@" @ b") = da(am) @ b" + (—1)"a™ @ dg(b").

Similarly we define the tensor product of graded abelian groups,
such as H*(X) @ H*(Y).



Algebraic Kunneth theorem

Theorem

Suppose A®, B* are chain complexes of free R-modules. There is a
natural homomorphism:

H*(A) ®g H*(B) — H*(A® B).

This homomorphism is an isomorphism if A® is a chain complex of
free R-modules, and H"(A) is also a free R-module for every n.



Topology

Let X, Y be topological spaces. Let U,V be open covers of X and
Y respectively. Let & x V be the open cover of X x Y consisting
of all products of elements of &/ and V. Notice that there is a
homomorphism

C(X; A) @ CY(Y; B) = GOup(X x Y;A® B)

The homomorphism sends a pair of functions

(f:U— A)®(g: V — A) to the function

feg: UxV — A® B. It turns out, that this homomorphism can
be extended to a map of chain complexes

Theorem
There exists a natural homomorphism - in fact a chain homotopy
equivalence

Gi(X,A) @ Ci(Y,B) = Gip(X x Y;A® B).



The Kunneth formula

The chain homomorphism induces a natural homomorphism
H*(X,A) @ H*(Y,B) - H*(X x Y; A® B).
In particular, if A= B = R is a ring, one gets a homomorphism

H* (X, R) ®r H*(Y,R) — H*(X x Y;R).

Theorem

This homomorphism is an isomorphism if, for example, X is a CW
complex with finitely many cells in each dimension, and ﬁ*(X, R)
is a free R-module (or more generally, flat).



Internal ring structure on cohomology

Suppose X is a space and R is a commutative ring. Then we have
natural homomorphisms

*(X, R) ®g H*(X, R) — H*(X x X; R) — H*(X, R).

This endows H*(X, R) with the structure of a graded commutative
ring. For whatever historical reasons, the multiplication in
cohomology is denoted by the symbol U, and is called “cup
product” .

Example

1

HY(S™ % S"Z) =2 Zlupm, un)/(u3, u?)
H*(CP",Z) Zlw)/(ug™).
HA(RP",Z/2) = Z[x]/(x"™1).

1

Applications: The Borsuk-Ulam theorem, non-existance of division
algebra structure on R” for n # 2.



