Cech and sheaf cohomology

Greg Arone

November 11, 2021

An example of Cech cohomology

As usual, let $I=[0,1]$. Let us calculate $\mathrm{H}^{*}(I, A)$. Consider the cover $\mathcal{U}=\left\{\left[0, \frac{3}{4}\right),\left(\frac{1}{2}, 1\right]\right\}$. The groups $\check{\mathrm{H}}_{\mathcal{U}}^{*}(I ; A)$ are calculated by the following complex:

$$
\begin{array}{ccccccc}
n & 0 & & 1 & & \cdots \\
C_{\mathcal{U}}^{n} & A \oplus A \\
\check{H}_{\mathcal{U}}^{n} & A & \xrightarrow{[1,-1]} & A \\
& & & & \cdots & \cdots \\
0 & \cdots
\end{array}
$$

Now let $\mathcal{U}=\left\{\left[0, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, 1\right]\right\}$, where for each k, $a_{k}<b_{k-1}<a_{k+1}$. Then the Cech complex has the following form

$$
\begin{array}{ccccccc}
n & 0 & & 1 & & 2 & \cdots \\
C_{\mathcal{U}}^{n} & A^{n} \\
\check{\mathrm{H}}_{\mathcal{U}}^{n} & A & & & A^{n-1} & \rightarrow & 0 \\
\cdots
\end{array}
$$

Every open cover of I has a refinement of this type. From here one can easily reach the (unsurprising) conclusion:

$$
\check{\mathrm{H}}^{n}(I ; A)=\left\{\begin{array}{cc}
A & n=0 \\
0 & n>0
\end{array}\right.
$$

Homotopy invariance

"Similarly" to our calculation of $\mathrm{H}^{n}(I ; A)$, one can prove the following

Lemma

Let X be a paracompact space. The canonical inclusions $i_{0}, i_{1}: X \hookrightarrow X \times I$ induce isomorphisms (which are necessarily the same)

$$
i_{0}^{*}, i_{1}^{*}: \check{\mathrm{H}}^{*}(X \times I ; A) \stackrel{\cong}{\rightrightarrows} \check{\mathrm{H}}^{*}(X ; A) .
$$

As a consequence we have the following important theorem

Theorem (Homotopy invariance)

Let $f, g: X \rightarrow Y$ be homotopic maps between paracompact spaces. Then they induce the same homomorphism

$$
\check{\mathrm{H}}^{*}(Y ; A) \rightarrow \check{\mathrm{H}}^{*}(X ; A) .
$$

The Mayer-Vietoris sequence

Suppose $X=U_{1} \cup U_{2}$, where U_{i} are open subsets. There is a LES

$$
\begin{array}{rlllll}
0 & \rightarrow & \check{H}^{0}(X ; A) & \xrightarrow{\left(i_{1}^{0}, i_{2}^{0}\right)} \\
& \rightarrow \check{\mathrm{H}}^{1}(X ; A) & \check{\mathrm{H}}^{0}\left(U_{1} ; A\right) \oplus \check{\mathrm{H}}^{0}\left(U_{2} ; A\right) & \left.\xrightarrow\left[i_{1}^{1}, i_{2}^{1}\right)\right]{\left(j_{1}^{0}-j_{2}^{0}\right)} & \check{\mathrm{H}}^{1}\left(U_{1} ; A\right) \oplus \check{\mathrm{H}}^{1}\left(U_{2} ; A\right) & \xrightarrow[\check{H}^{0}\left(U_{1} \cap U_{2} ; A\right)]{\left(j_{1}^{1}-j_{2}^{1}\right)} \\
\check{H}^{1}\left(U_{1} \cap U_{2} ; A\right) & \ldots
\end{array}
$$

Proof: A denotes an abelian group, and also the sheaf represented by $A: O \mapsto A^{O}$. Let $A_{1}=i_{1}^{*} i_{1}!A$ be the sheaf $O \mapsto A^{O \cap U}$. Def. A_{2}, A_{12} similarly. We get a sort of exact sequence of presheaves:

$$
0 \rightarrow A \xrightarrow{\left(i_{1}, i_{2}\right)} A_{1} \oplus A_{2} \xrightarrow{j_{1}-j_{2}} A_{12}(-->0)
$$

This is a left exact sequence of presheaves and it is short exact when evaluated on a set O that is contained either in U_{1} or in U_{2}. It follows that if \mathcal{O} is an open cover of X, that is subordinate to $\left\{U_{1}, U_{2}\right\}$, there is a short exact sequence of Cech complexes

$$
0 \rightarrow C_{\mathcal{O}}^{*}(X ; A) \xrightarrow{\left(i_{1}^{*}, i_{2}^{*}\right)} C_{\mathcal{O}}^{*}\left(U_{1} ; A\right) \oplus C_{\mathcal{O}}^{*}\left(U_{2} ; A\right) \xrightarrow{j_{1}^{*}-j_{2}^{*}} C_{\mathcal{O}}^{*}\left(U_{1} \cap U_{2} ; A\right) \rightarrow 0 .
$$

From here we get a LES of cohomology groups $\check{\mathrm{H}}_{\mathcal{O}}^{*}(-; A)$. The poset of subordinate open covers is cofinal, so passing to colimits we obtain a LES of cech cohomology groups

Examples

Using homotopy invariance, the Mayer-Vietoris sequence, and induction, one can easily calculate the cohomology groups of a sphere:

$$
\check{\mathrm{H}}^{n}\left(S^{d} ; A\right)=\left\{\begin{array}{cc}
A & n=0, \text { or } d \\
0 & \text { otherwise }
\end{array}\right.
$$

Remark

It is often convenient to consider reduced cohomology:

$$
\widetilde{\mathrm{H}}^{*}(X ; A):=\operatorname{ker}\left(\check{\mathrm{H}}^{*}(X ; A) \rightarrow \check{\mathrm{H}}^{*}(* ; A)\right) .
$$

Reduced cohomology is almost the same as unreduced cohomology, except that it knocks of a factor of A in degree zero. For example $\widetilde{\mathrm{H}}^{*}(* ; A)=0$, and $\widetilde{\mathrm{H}}^{*}\left(S^{d} ; A\right)$ only has a copy of A in degree d.

The cohomology of $C W$-complexes is often tractable. Let X be a CW-complex. For each d, let X^{d} be the d-skeleton of X. Thus X is filtered by subspaces $X^{d-1} \subset X^{d} \subset \cdots$. Let C_{n} be the set of n-dimensional cells of X.

Lemma

For each d, there is a long exact sequence
$\cdots \rightarrow \check{\mathrm{H}}^{n}\left(X^{d} ; A\right) \rightarrow \check{\mathrm{H}}^{n}\left(X^{d-1} ; A\right) \rightarrow \widetilde{\mathrm{H}}^{n}\left(S^{d-1} ; A\right)^{C_{d}} \rightarrow \check{\mathrm{H}}^{n+1}\left(X^{d} ; A\right) \cdots$

In fact, one can organize things even better by splicing the exact sequences. One obtains a chain complex of the following form

$$
A^{C_{0}} \rightarrow A^{C_{2}} \rightarrow \cdots \rightarrow A^{C_{d}} \rightarrow \cdots
$$

This is called the cellular chain complex of X. Its cohomology is isomorphic to the cech cohomology (or any other cohomology satisfying the Eilenberg-Steenrod axioms).

Example: projective spaces

The complex projective space $\mathbb{C} P^{n}$ is obtained from $\mathbb{C} P^{n-1}$ by attaching a cell of dimension $2 n$. Thus $\mathbb{C} P^{n}$ has a cell structure with a single cell in each even dimension. It follows immediately that the cohomology of $\mathbb{C} P^{n}$ is given by the following formula:

$$
\check{\mathrm{H}}^{i}\left(\mathbb{C} P^{n} ; A\right)=\left\{\begin{array}{cc}
A & i=2 l \leq 2 n \\
0 & \text { otherwise }
\end{array}\right.
$$

The real projective space requires a little more work. The space $\mathbb{R} P^{n}$ is obtained by attaching a cell of dimension n to $\mathbb{R} P^{n-1}$. Thus $\mathbb{R} P^{n}$ has a cell structure with a single cell in each dimension. It follows that the cellular chain complex of $\mathbb{R} P^{n}$ has the following form

0		1	2		\cdots		n	
A	$\xrightarrow{d^{0}}$	A	$\xrightarrow{d^{1}}$	A	$\xrightarrow{d^{2}}$	\cdots	$\xrightarrow{d^{n-1}}$	A

Lemma

d^{i} is multiplication by 2 for odd i and is zero for even i.

products

The lemma about the cohomology of $X \times I$ is a special case of a general result about the cohomology of products. Before we state the result, let us review tensor products of complexes.

Definition

Let A^{\bullet}, B^{\bullet} be (co)chain complexes. We define their tensor product $(A \otimes B)^{\bullet}$ as follows. In degree n,

$$
(A \otimes B)^{n}=\bigoplus_{i+j=n} A^{i} \otimes B^{j}
$$

The differential is defined as follows. Let $a^{m} \in A^{m}, b^{n} \in B^{n}$. Then

$$
d\left(a^{m} \otimes b^{n}\right)=d_{A}\left(a^{m}\right) \otimes b^{n}+(-1)^{m} a^{m} \otimes d_{B}\left(b^{n}\right)
$$

Similarly we define the tensor product of graded abelian groups, such as $H^{*}(X) \otimes H^{*}(Y)$.

Algebraic Kunneth theorem

Theorem

Suppose A^{\bullet}, B^{\bullet} are chain complexes of free R-modules. There is a natural homomorphism:

$$
H^{*}(A) \otimes_{R} H^{*}(B) \rightarrow H^{*}(A \otimes B) .
$$

This homomorphism is an isomorphism if A^{\bullet} is a chain complex of free R-modules, and $H^{n}(A)$ is also a free R-module for every n.

Topology

Let X, Y be topological spaces. Let \mathcal{U}, \mathcal{V} be open covers of X and Y respectively. Let $\mathcal{U} \times \mathcal{V}$ be the open cover of $X \times Y$ consisting of all products of elements of \mathcal{U} and \mathcal{V}. Notice that there is a homomorphism

$$
C_{\mathcal{U}}^{0}(X ; A) \otimes C_{\mathcal{V}}^{0}(Y ; B) \rightarrow C_{\mathcal{U} \times \mathcal{V}}^{0}(X \times Y ; A \otimes B)
$$

The homomorphism sends a pair of functions $(f: U \rightarrow A) \otimes(g: V \rightarrow A)$ to the function
$f \otimes g: U \times V \rightarrow A \otimes B$. It turns out, that this homomorphism can be extended to a map of chain complexes

Theorem

There exists a natural homomorphism - in fact a chain homotopy equivalence

$$
C_{\mathcal{U}}^{*}(X, A) \otimes C_{\mathcal{V}}^{*}(Y, B) \rightarrow C_{\mathcal{U} \times \mathcal{V}}^{*}(X \times Y ; A \otimes B)
$$

The Kunneth formula

The chain homomorphism induces a natural homomorphism

$$
\check{\mathrm{H}}^{*}(X, A) \otimes \check{\mathrm{H}}^{*}(Y, B) \rightarrow \check{\mathrm{H}}^{*}(X \times Y ; A \otimes B)
$$

In particular, if $A=B=R$ is a ring, one gets a homomorphism

$$
\check{\mathrm{H}}^{*}(X, R) \otimes_{R} \check{\mathrm{H}}^{*}(Y, R) \rightarrow \check{\mathrm{H}}^{*}(X \times Y ; R)
$$

Theorem
This homomorphism is an isomorphism if, for example, X is a CW complex with finitely many cells in each dimension, and $\mathrm{H}^{*}(X, R)$ is a free R-module (or more generally, flat).

Internal ring structure on cohomology

Suppose X is a space and R is a commutative ring. Then we have natural homomorphisms

$$
\check{\mathrm{H}}^{*}(X, R) \otimes_{R} \check{\mathrm{H}}^{*}(X, R) \rightarrow \check{\mathrm{H}}^{*}(X \times X ; R) \rightarrow \check{\mathrm{H}}^{*}(X, R) .
$$

This endows $\check{H}^{*}(X, R)$ with the structure of a graded commutative ring. For whatever historical reasons, the multiplication in cohomology is denoted by the symbol \cup, and is called "cup product".
Example

$$
\begin{aligned}
\check{\mathrm{H}}^{*}\left(S^{m} \times S^{n}, \mathbb{Z}\right) & \cong \mathbb{Z}\left[u_{m}, u_{n}\right] /\left(u_{m}^{2}, u_{n}^{2}\right) \\
\check{\mathrm{H}}^{*}\left(\mathbb{C} P^{n}, \mathbb{Z}\right) & \cong \mathbb{Z}\left[u_{2}\right] /\left(u_{2}^{n+1}\right) . \\
\check{\mathrm{H}}^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) & \cong \mathbb{Z}[x] /\left(x^{n+1}\right) .
\end{aligned}
$$

Applications: The Borsuk-Ulam theorem, non-existance of division algebra structure on \mathbb{R}^{n} for $n \neq 2^{k}$.

