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An example of Cech cohomology
As usual, let I = [0, 1]. Let us calculate Ȟ∗(I ,A). Consider the
cover U = {[0, 3

4 ), ( 1
2 , 1]}. The groups Ȟ∗U (I ;A) are calculated by

the following complex:

n 0 1 2 · · ·
Cn
U A⊕ A

[1,−1]−−−→ A → 0 · · ·
Ȟn
U A 0 0 · · ·

Now let U = {[0, b1), (a2, b2), . . . , (an, 1]}, where for each k ,
ak < bk−1 < ak+1. Then the Cech complex has the following form

n 0 1 2 · · ·
Cn
U An −→ An−1 → 0 · · ·

Ȟn
U A 0 0 · · ·

Every open cover of I has a refinement of this type. From here one
can easily reach the (unsurprising) conclusion:

Ȟn(I ;A) =

{
A n = 0
0 n > 0



Homotopy invariance

“Similarly” to our calculation of Ȟn(I ;A), one can prove the
following

Lemma
Let X be a paracompact space. The canonical inclusions
i0, i1 : X ↪→ X × I induce isomorphisms (which are necessarily the
same)

i∗0 , i
∗
1 : Ȟ∗(X × I ;A)

∼=−→ Ȟ∗(X ;A).

As a consequence we have the following important theorem

Theorem (Homotopy invariance)

Let f , g : X → Y be homotopic maps between paracompact
spaces. Then they induce the same homomorphism

Ȟ∗(Y ;A)→ Ȟ∗(X ;A).



The Mayer-Vietoris sequence
Suppose X = U1 ∪ U2, where Ui are open subsets. There is a LES

0 → Ȟ0(X ;A)
(i01 ,i

0
2 )

−−−−→ Ȟ0(U1;A)⊕ Ȟ0(U2;A)
(j01−j02 )
−−−−−→ Ȟ0(U1 ∩ U2;A) →

→ Ȟ1(X ;A)
(i11 ,i

1
2 )

−−−−→ Ȟ1(U1;A)⊕ Ȟ1(U2;A)
(j11−j12 )
−−−−−→ Ȟ1(U1 ∩ U2;A) · · ·

Proof: A denotes an abelian group, and also the sheaf represented
by A: O 7→ AO . Let A1 = i∗1 i1!A be the sheaf O 7→ AO∩U . Def.
A2, A12 similarly. We get a sort of exact sequence of presheaves:

0→ A
(i1,i2)−−−→ A1 ⊕ A2

j1−j2−−−→ A12(99K 0).

This is a left exact sequence of presheaves and it is short exact
when evaluated on a set O that is contained either in U1 or in U2.
It follows that if O is an open cover of X , that is subordinate to
{U1,U2}, there is a short exact sequence of Cech complexes

0→C∗O(X ;A)
(i∗1 ,i∗2 )
−−−−→C∗O(U1;A)⊕C∗O(U2;A)

j∗1−j∗2−−−→C∗O(U1∩U2;A)→0.

From here we get a LES of cohomology groups Ȟ∗O(−;A). The
poset of subordinate open covers is cofinal, so passing to colimits
we obtain a LES of cech cohomology groups



Examples

Using homotopy invariance, the Mayer-Vietoris sequence, and
induction, one can easily calculate the cohomology groups of a
sphere:

Ȟn(Sd ;A) =

{
A n = 0, or d
0 otherwise

Remark
It is often convenient to consider reduced cohomology:

H̃∗(X ;A) := ker
(
Ȟ∗(X ;A)→ Ȟ∗(∗;A)

)
.

Reduced cohomology is almost the same as unreduced cohomology,
except that it knocks of a factor of A in degree zero. For example
H̃∗(∗;A) = 0, and H̃∗(Sd ;A) only has a copy of A in degree d .



The cohomology of CW-complexes is often tractable. Let X be a
CW-complex. For each d , let X d be the d-skeleton of X . Thus X
is filtered by subspaces X d−1 ⊂ X d ⊂ · · · . Let Cn be the set of
n-dimensional cells of X .

Lemma
For each d, there is a long exact sequence

· · · → Ȟn(X d ;A)→ Ȟn(X d−1;A)→ H̃n(Sd−1;A)Cd → Ȟn+1(X d ;A) · · · .

In fact, one can organize things even better by splicing the exact
sequences. One obtains a chain complex of the following form

AC0 → AC2 → · · · → ACd → · · ·

This is called the cellular chain complex of X . Its cohomology is
isomorphic to the cech cohomology (or any other cohomology
satisfying the Eilenberg-Steenrod axioms).



Example: projective spaces
The complex projective space CPn is obtained from CPn−1 by
attaching a cell of dimension 2n. Thus CPn has a cell structure
with a single cell in each even dimension. It follows immediately
that the cohomology of CPn is given by the following formula:

Ȟi (CPn;A) =

{
A i = 2l ≤ 2n
0 otherwise

The real projective space requires a little more work. The space
RPn is obtained by attaching a cell of dimension n to RPn−1.
Thus RPn has a cell structure with a single cell in each dimension.
It follows that the cellular chain complex of RPn has the following
form

0 1 2 · · · n

A
d0

−→ A
d1

−→ A
d2

−→ · · · dn−1

−−−→ A

Lemma
d i is multiplication by 2 for odd i and is zero for even i .



products

The lemma about the cohomology of X × I is a special case of a
general result about the cohomology of products. Before we state
the result, let us review tensor products of complexes.

Definition
Let A•,B• be (co)chain complexes. We define their tensor product
(A⊗ B)• as follows. In degree n,

(A⊗ B)n =
⊕
i+j=n

Ai ⊗ B j .

The differential is defined as follows. Let am ∈ Am, bn ∈ Bn. Then

d(am ⊗ bn) = dA(am)⊗ bn + (−1)mam ⊗ dB(bn).

Similarly we define the tensor product of graded abelian groups,
such as H∗(X )⊗ H∗(Y ).



Algebraic Kunneth theorem

Theorem
Suppose A•,B• are chain complexes of free R-modules. There is a
natural homomorphism:

H∗(A)⊗R H∗(B)→ H∗(A⊗ B).

This homomorphism is an isomorphism if A• is a chain complex of
free R-modules, and Hn(A) is also a free R-module for every n.



Topology

Let X , Y be topological spaces. Let U ,V be open covers of X and
Y respectively. Let U × V be the open cover of X × Y consisting
of all products of elements of U and V. Notice that there is a
homomorphism

C 0
U (X ;A)⊗ C 0

V(Y ;B)→ C 0
U×V(X × Y ;A⊗ B)

The homomorphism sends a pair of functions
(f : U → A)⊗ (g : V → A) to the function
f ⊗ g : U × V → A⊗ B. It turns out, that this homomorphism can
be extended to a map of chain complexes

Theorem
There exists a natural homomorphism - in fact a chain homotopy
equivalence

C ∗U (X ,A)⊗ C ∗V(Y ,B)→ C ∗U×V(X × Y ;A⊗ B).



The Kunneth formula

The chain homomorphism induces a natural homomorphism

Ȟ∗(X ,A)⊗ Ȟ∗(Y ,B)→ Ȟ∗(X × Y ;A⊗ B).

In particular, if A = B = R is a ring, one gets a homomorphism

Ȟ∗(X ,R)⊗R Ȟ∗(Y ,R)→ Ȟ∗(X × Y ;R).

Theorem
This homomorphism is an isomorphism if, for example, X is a CW
complex with finitely many cells in each dimension, and Ȟ∗(X ,R)
is a free R-module (or more generally, flat).



Internal ring structure on cohomology

Suppose X is a space and R is a commutative ring. Then we have
natural homomorphisms

Ȟ∗(X ,R)⊗R Ȟ∗(X ,R)→ Ȟ∗(X × X ;R)→ Ȟ∗(X ,R).

This endows Ȟ∗(X ,R) with the structure of a graded commutative
ring. For whatever historical reasons, the multiplication in
cohomology is denoted by the symbol ∪, and is called “cup
product”.

Example
Ȟ∗(Sm × Sn,Z) ∼= Z[um, un]/(u2

m, u
2
n)

Ȟ∗(CPn,Z) ∼= Z[u2]/(un+1
2 ).

Ȟ∗(RPn,Z/2) ∼= Z[x ]/(xn+1).

Applications: The Borsuk-Ulam theorem, non-existance of division
algebra structure on Rn for n 6= 2k .


