A CW-complex is a Hausdorff space χ with a partition into disjoint sets, called open cells, denoted by ℓ_{χ} such that:

A CW-complex is a Hausdorff space χ with a partition into disjoint sets, called open cells, denoted by ℓ_{χ} such that:

1. For each cell e_{α} there is a characteristic (continuous) map $\phi: D^n \longrightarrow X$ restricting to the homeomorphism $\operatorname{Int}(D^n) \longrightarrow e_{\alpha}$

A CW-complex is a Hausdorff space χ with a partition into disjoint sets, called open cells, denoted by ℓ_{χ} such that:

- 1. For each cell e_{α} there is a characteristic (continuous) map $\phi_{\alpha}^n : D^n \longrightarrow X$ restricting to the homeomorphism $\text{Int}(D^n) \longrightarrow e_{\alpha}$
- 2. The image of the boundary ∂D^n of each cell is contained in a finite number of cells of dimension $\langle n \rangle$ (The restriction map $| \phi_{\alpha}^n |_{\partial D^n}$ is called the attaching map)

A CW-complex is a Hausdorff space χ with a partition into disjoint sets, called open cells, denoted by ℓ_{χ} such that:

- 1. For each cell e_{α} there is a characteristic (continuous) map $\phi_{\alpha}^n: O^n \longrightarrow X$ restricting to the homeomorphism $\operatorname{Int}(O^n) \longrightarrow e_{\alpha}$
- 2. The image of the boundary ∂D^n of each cell is contained in a finite number of cells of dimension $\langle n \rangle$ (The restriction map $| \phi_n^n |_{\partial D^n}$ is called the attaching map)
- 3. A subset $F \subseteq X$ is closed if and only if $F \cap \overline{\ell_{\chi}}$ if closed (in X) for each cell ℓ_{χ}

form a large class of topological spaces of combinatorial nature which makes them very nice to work with in homotopy theory

STEPAN MAXIMOV 2021-10-2

Pitch

SCHUBERT CELLS

1. $\bullet = \ell^o$

1.
$$\bullet = \ell^0$$

2.
$$S^n = e^o \sqcup e^n$$

2.
$$S^n = e^o \sqcup e^n$$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_1^{\circ} \sqcup e_2^{\circ}$$

1.
$$\bullet = e^{\circ}$$

2.
$$S^n = e^0 \sqcup e^n$$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_{1}^{\circ} \sqcup e_{2}^{\circ}, \quad S^{i} = e_{1}^{\circ} \bigcup_{e_{2}^{i}} e_{2}^{\circ} = e_{1}^{\circ} \sqcup e_{2}^{\circ} \sqcup e_{1}^{i} \sqcup e_{2}^{i}$$

1.
$$\bullet = \ell^{\circ}$$

2.
$$S^n = e^o \sqcup e^n$$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_{1}^{\circ} \sqcup e_{2}^{\circ}, \quad S^{1} = e_{1}^{\circ} \bigcup_{e_{2}^{i}} e_{2}^{\circ} = e_{1}^{\circ} \sqcup e_{2}^{\circ} \sqcup e_{1}^{i} \sqcup e_{2}^{i}, \dots, \quad S^{n} = \bigcup_{i=0}^{n} e_{1}^{i} \sqcup e_{2}^{i}$$

1.
$$\bullet = \ell^{\circ}$$

2.
$$S^n = e^o \sqcup e^n$$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_{1}^{\circ} \sqcup e_{2}^{\circ}, \quad S^{i} = e_{1}^{\circ} \bigcup_{e_{2}^{i}} e_{2}^{\circ} = e_{1}^{\circ} \sqcup e_{2}^{\circ} \sqcup e_{1}^{i} \sqcup e_{2}^{i}, \dots, \quad S^{n} = \bigcup_{i=0}^{n} e_{1}^{i} \sqcup e_{2}^{i}$$

1.
$$\bullet = \ell^{\circ}$$

$$_{2}$$
. $S^{n} = e^{\circ} \sqcup e^{n}$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_{1}^{\circ} \sqcup e_{2}^{\circ}, \quad S^{i} = e_{1}^{\circ} \bigcup_{e_{2}^{i}} e_{2}^{\circ} = e_{1}^{\circ} \sqcup e_{2}^{\circ} \sqcup e_{1}^{i} \sqcup e_{2}^{i}, \dots, \quad S^{n} = \bigcup_{i=0}^{n} e_{1}^{i} \sqcup e_{2}^{i}$$

4.
$$\mathbb{RP}^{\circ} = \cdot = e^{\circ}$$
, $\mathbb{RP}^{i} = \mathbb{R} \sqcup \mathbb{RP}^{\circ} = e^{i} \sqcup e^{\circ}$

1.
$$\bullet = \ell^{\circ}$$

$$_{2}$$
. $S^{n} = e^{\circ} \sqcup e^{n}$

3.
$$S^{\circ} = \cdot \cdot \cdot = e_{1}^{\circ} \sqcup e_{2}^{\circ}, \quad S^{1} = e_{1}^{\circ} \bigcup_{e_{2}^{i}} e_{2}^{\circ} = e_{1}^{\circ} \sqcup e_{2}^{\circ} \sqcup e_{1}^{i} \sqcup e_{2}^{i}, \dots, \quad S^{n} = \bigcup_{i=0}^{n} e_{1}^{i} \sqcup e_{2}^{i}$$

4.
$$\mathbb{RP}^{\circ} = \cdot = e^{\circ}$$
, $\mathbb{RP}^{1} = \mathbb{R} \sqcup \mathbb{RP}^{\circ} = e^{1} \sqcup e^{\circ}$, ..., $\mathbb{RP}^{n} = \mathbb{R}^{n} \sqcup \mathbb{RP}^{n-1} = \bigcup_{i=0}^{n} e^{i}$

Another definition

Every CW-complex X has the skeletal filtration

$$\chi^{0} \subseteq \chi^{1} \subseteq \dots \subseteq \chi^{m} \subseteq \dots \subseteq \chi = \bigcup_{i \geqslant 0} \chi^{i}$$

such the following diagram is a pushout diagram in Top

SCHUBERT CELLS

Another definition

Every CW-complex X has the skeletal filtration

$$\chi^0 \subseteq \chi^1 \subseteq \dots \subseteq \chi^m \subseteq \dots \subseteq \chi = \bigcup_{i \neq 0} \chi^i$$

such the following diagram is a pushout diagram in Top

SCHUBERT CELLS

Another definition

The convers is also true

Given a topological space χ with filtration

$$\chi^{o} \subseteq \chi^{1} \subseteq \cdots \subseteq \chi^{m} \subseteq \cdots$$

such that:

- 1. χ° has discrete topology
- 2. χ^n is an adjunction of n-disks to χ^{n-1} i.e. $\chi^n \cong \chi^{n-1} \coprod_{\alpha} \Omega^n / \chi$
- 3. $\chi = \bigcup_{i \ge 0} \chi^i$ has the colimit topology, i.e.

$$F \subseteq X$$
 is closed $\iff F \cap X^n$ is closed in X^n for all $n \ge 0$

Then χ is Hausdorff and posses a unique CW-structure such that χ^n is the n-skeleton of χ

Is there a CW-structure on $G_{2n}(\mathbb{R}^{N})$? What does it look like?

Is there a CW-structure on $G_{2n}(\mathbb{R}^{N})$? What does it look like?

$$\chi^{0} \subseteq \chi^{1} \subseteq \cdots \subseteq \chi^{m} \subseteq \cdots \subseteq Gr_{n}(\mathbb{R}^{N}) = \bigcup_{i \geq 0} \chi^{i}$$

We know that
$$Gr_1(\mathbb{R}^N) = \mathbb{R}P^{N-1}$$
 \longrightarrow $CW-complex!$

Is there a CW-structure on $G_{2n}(\mathbb{R}^{N})$? What does it look like?

$$\chi^{0} \subseteq \chi^{1} \subseteq \dots \subseteq \chi^{m} \subseteq \dots \subseteq Gr_{n}(\mathbb{R}^{N}) = \bigcup_{i \geq 0} \chi^{i}$$

$$Schußert vorieties = Schußert cells$$

Fix a complete flag of subspaces in \mathbb{R}^N : $\mathcal{O} = F_0 \subset F_1 \subset ... \subset F_N = \mathbb{R}^N$

take any $W \in G_{2n}(\mathbb{R}^N)$ and consider another flag $O = W \cap F_0 \subseteq W \cap F_1 \subseteq ... \subseteq W \cap F_N = W$

Let $1 \le a_1 \le a_2 \le a_n \le N$ be the indices such that $\dim(W \cap F_{a_i}) = \dim(W \cap F_{a_{i-1}}) + 1$

Define $e(a_1, a_2, ..., a_n) := \{ W \in Giz_n(\mathbb{R}^N) \mid \dim(W \cap F_{a_i}) = \dim(W \cap F_{a_{i-1}}) + 1 \}$

$$\chi(a_1, a_2, ..., a_n) := \{ W \in G_{2n}(\mathbb{R}^N) \mid \dim(W \cap F_{a_i}) \geq i \}$$

Fix a complete flag of subspaces in
$$\mathbb{R}^N$$
: $\mathcal{O} = F_o \subset F_1 \subset ... \subset F_N = \mathbb{R}^N$ take any $W \in G_{2_n}(\mathbb{R}^N)$ and consider another flag $\mathcal{O} = W \cap F_o \subseteq W \cap F_1 \subseteq ... \subseteq W \cap F_N = W$ Let $1 \le a_1 < a_2 < ... < a_n \le N$ be the indices such that $\dim(W \cap F_{a_i}) = \dim(W \cap F_{a_{i-1}}) + 1$ Schubert cell Define $e(a_1, a_2, ..., a_n) = \{W \in G_{2_n}(\mathbb{R}^N) \mid \dim(W \cap F_{a_i}) = \dim(W \cap F_{a_{i-1}}) + 1\}$ Schubert variety $X(a_1, a_2, ..., a_n) = \{W \in G_{2_n}(\mathbb{R}^N) \mid \dim(W \cap F_{a_i}) \ge i\}$