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CW-complexes

form a large class of topological spaces of combinatorial
nature which makes them very nice to work with in
homotopy theory



Examples



Examples
. e =g£°



Examples \






o () o i {
foed = = - 4“@1

(4 == 3 €

eo efueg U 4

S 400211
=
21 L|€2'
3. S



Examples lﬁ
1. e = £° en
. SN=¢’uen ‘v

e
n
o o a o n " .
3. S =+ o =€ Lle;' Siz e4°O€f=€,U€2LJ61UC'z,... , S= U@}‘U@;
(2

i =0
2



n
o (2] (<] 9 o 4 ) l:
3_ 5 = o0 [ — ei I_Iea . siz e.’oO ez = elueg Ueiue‘z’ . ee Sn= Ua}uez

ezi =0



o RP=- =€, RP-RURP-ctue



ei

o (=] o [
3. S = o =€ LleZ, Siz e;’in’=€4U€gUeiU€'z,...
(2h

n n n-{ z 1
° . =eo; @P:l:ﬁl)umpt’:eiueol 77RP=W2 UTRP - iL-—Joe




Another definition

Every CW-complex X has the skeletal filtration
Xocxle ..exe. ex=Ux
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Another definition

The convers is also true

Given a topological space X with filtration
m

e xle ... e e ...

such that:

1. % has discrete topology
2. X"is an adjunction of n-disks to 9( |e ?(n & %n‘ U D/,V
3.X= l?J X' has the colimit topology, i.e.
” FeXis closed &= FA X" is closed in X" $or all nzo
Then (X is Hausdorff and posses a unique CW-structure such that X" is the n-skeleton of X
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Grassmanians and Schubert cells

N
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