The tangent bundle of a smooth manifold or tangent sheaf of an algebraic variety (Chapter 2.5.2.)

Vahid Shahverdi

KTH Royal Institute of Technology

vahidsha@kth.se

October 18, 2021

 200

Derivation

Let us recall the algebraic notion of derivation.

Definition

Let A be a ring, R an A-algebra and M an R-module. Then an A-derivation $D: R \to M$ is an A-linear morphism, which satisfies the Leibniz rule

 $D(ab) = aD(b) + bD(a), \forall a, b \in R$.

We denote the set of these by $Der_A(R, M)$. It has a natural structure of A-module.

Example

Let $M = R = C^\infty(\mathbb{R}^n)$ be the algebra of smooth real-valued functions on \mathbb{R}^n . For a chosen basis of \mathbb{R}^n , let $x_i:\mathbb{R}^n\to\mathbb{R}$ be the coordinate function $(x_1, ..., x_n) \rightarrow x_i$. Then $\frac{\partial}{\partial x_i}$ is a derivation on R.

 QQQ

4 ロ) 4 個) 4 ミ) 4 ミ)

Tangent space

Definition

let X be a variety (or a smooth manifold) and $x \in X$. Denote by m the maximal ideal of $\mathcal{O}_{X,x}.$ We call $\mathfrak{m}/\mathfrak{m}^2$ the cotangent space of X at $x,$ and define its algebraic dual $\mathcal{T}_{\varkappa}X:=\mathsf{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k)$ to be the tangent space of X at x. Also, we say x is a smooth point of X if dim $T_xX = \dim X$.

Example

Let $X = \mathbb{A}^2$ be the affine plane and let $a = (0,0)$. Then $\mathcal{O}_{X,a}=k[x,y]_{(x,y)}=\{\frac{t}{2}$ $\frac{f}{g} | f, g \in k[x,y]$ and $g((0,0)) \neq 0\}$ which is the localization of $k[x, y]$ at the ideal (x, y) . The unique maximal ideal corresponds to the ideal (x, y) . Thus, $\mathfrak{m} / \mathfrak{m}^2 \cong \frac{(x, y)}{(x, y)^2}$ $\frac{(x,y)}{(x,y)^2} = k^{\oplus 2}$ and

$$
\operatorname{\mathsf{Hom}}\nolimits_k(\mathfrak{m}/\mathfrak{m}^2,k)=\operatorname{\mathsf{Hom}}\nolimits_k(k^{\oplus 2},k)\cong k^{\oplus 2}
$$

 200

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Tangent space of nodal curve

Let $X=V(y^2-x^3-x^2)$ be a nodal elliptic curve embedded in $\mathbb{A}^2.$ We want to calculate the tangent space of X at origin.

 Ω

- First, we see the coordinate ring is $A(X) = \frac{k[x,y]}{(y^2 x^3 x^2)}$, which corresponds to functions that can define on the space X .
- Now, we can make the stalk of structure sheaf $\mathcal{O}_{X,a}$ for $a = (0,0)$, which is the localization of the ring $A(X)$ at origin a.
- The unique maximal ideal m is the localization of (x, y) .
- In the next step, $\mathfrak{m}/\mathfrak{m}^2$ is localization of $\frac{(x,y)}{y^2-x^3-x^2}/\frac{(x^2,y^2,xy)}{y^2-x^3-x^2}$ $\frac{(x^3, y^3, xy)}{y^2 - x^3 - x^2}$, which is isomorphic to $\frac{(x,y)}{x^2, xy, y^2} \cong k^{\oplus 2}.$ This shows $\dim_k \mathcal{T}_{(0,0)}X = 2$ despite the fact that X is one dimensional.

つへへ

(ロトメ倒) × (目) × (目)

Generators of maximal ideal of C_0^{∞} $\tilde{\mathcal{C}}^{\infty}(\mathbb{R}^{n})$

Lemma

Let $f \in C^{\infty}(\mathbb{R}^n)$ then for every $a \in \mathbb{R}^n$, $f(x) = f(a) + \sum_{i=1}^n g_i(x)(x_i - a_i)$ for some smooth function $g_i(x)$.

We can write $f(x) - f(a)$ as

$$
\int_0^1 \frac{d}{dt} f(a+t(x-a)) dt = \sum \int_0^1 \frac{\partial f}{\partial x_i} (a+t(x-a))(x_i-a_i) dt
$$

$$
= \sum (x_i-a_i) \underbrace{\int_0^1 \frac{\partial f}{\partial x_i} (a+t(x-a))}_{=g_i(x)}
$$

Proposition		
The maximal ideal $C_0^{\infty}(\mathbb{R}^n)$ is finitely generated by $\{x_1, ..., x_n\}$		
Vahid Shahverdi (KTH)	October 18, 2021	6/16

Some basic algebra facts

For a commutative ring R, we define dim R is the maximum length of chain of prime ideals of R.

 $\dim(R) = \max(\{n \mid \mathfrak{p}_0 \subseteq ... \subseteq \mathfrak{p}_n \text{ such that } \mathfrak{p}_i \text{ are prime ideal}\})$

Also, We define the height of a prime ideal p to be the maximum length of descending chain of prime ideals from p.

Some important theorems:

- Let X be a variety (or a smooth manifold) then dim $X = \dim \mathcal{O}_{X \times}$ for every $x \in X$.
- Krull dimension theorem: Let R be Noetherian ring, and let prime ideal p is generated by d elements then $ht(p) \leq d$.
- Nakayama lemma: Let R be a local Noetherian ring with the maximal ideal m then the minimum number of generator of m is equal to $\mathsf{dim}_k\,\mathfrak{m}/\mathfrak{m}^2$, where $k=R/\mathfrak{m}$

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Proposition

Let X be a variety (or a smooth manifold) then we have the followings:

- **1** dim_k $T_xX >$ dim X, and for a smooth manifold, always equality happens.
- **2** We endow k with an $O_{X,x}$ -module structure via the following law :

$$
f.\alpha = f(x).\alpha
$$

for $f \in \mathcal{O}_{X,x}$ and $\alpha \in k$. Then $T_xX \cong \text{Der}_k(\mathcal{O}_{X,x},k)$.

 200

イロト イ押ト イヨト イヨト

Sketch of proof

Proof.

Part a)

• We want to prove

 $d:=\operatorname{\mathsf{dim}}_{\mathsf{k}}\operatorname{\mathsf{Hom}}(\mathfrak{m}/\mathfrak{m}^2,\mathsf{k})=\operatorname{\mathsf{dim}}_{\mathsf{k}}\mathfrak{m}/\mathfrak{m}^2\geq \operatorname{\mathsf{dim}}\mathcal{O}_{X,\mathsf{x}}=\operatorname{\mathsf{dim}} X$

• Since m is finitely generated, by Nakayama's lemma we have m is generated by d elements.By Krull theorem,

$$
\dim \mathcal{O}_{X,x}=\operatorname{ht}\mathfrak{m}\leq d.
$$

イロト イ押ト イヨト イヨト

 200

Note that for a smooth manifold of dimension n , we have

$$
\mathfrak{m}/\mathfrak{m}^2=(x_1,...,x_n)/(x_1^2,x_1x_2,..,x_ix_j,...,x_n^2)\cong \mathbb{R}^n
$$

Vahid Shahverdi (KTH) October 18, 2021 9/16

Proof.

Part b)

• Let
$$
D \in \text{Der}_k(\mathcal{O}_{X,x}, k)
$$
. If $f, g \in \mathfrak{m}$, then
\n
$$
D(fg) = g(x)D(f) + f(x)D(g) = 0
$$
, thus $D|_{\mathfrak{m}} \in T_xX$

• Let $\phi : \mathfrak{m}/\mathfrak{m}^2 \to k$, then we want to construct a map $D_{\phi} : \mathcal{O}_{X,x} \to k$. We claim that the appropriate choice is $D_{\phi}(f) = \phi(f_0)$, where $f = f_0 + k$ and $f_0 \in \mathfrak{m}$.

KED KARD KED KED E VOOR

One can check that $D \to D|_\mathfrak{m} \to D_{D|_\mathfrak{m}}$ is identity and so is $\phi \to D_{\phi} \to D_{\phi}|_{\mathfrak{m}}.$

Corollary

Let $\mathcal{TM}:=\bigcup_{a\in M}\mathcal{T}_a\mathcal{M}$, and $\pi=\mathcal{T}M\to M$ be the natural projection. For a smooth chart (U, ϕ) , we have

$$
\Phi: \pi^{-1}(U) \rightarrow \mathbb{R}^{2n} : \sum v^i \frac{\partial}{\partial \phi_i} |_{\rho} \rightarrow (\phi(p), v)
$$

which is a bijection onto its image, so TM is a real vector bundle.

Corollary

For an n-dimensional manifold M, TM is an n-dimensional real vector bundle.

イロト イ押ト イヨト イヨト

 Ω

Let X be a variety (or a smooth manifold) over k, and let $\Delta: X \to X \times_k X$ be the diagonal map. we define the cotangent sheaf (Kähler differential) $\Omega_X = \Delta^*(\mathcal{I}/\mathcal{I}^2)$. One can see that the fiber at each point $x \in \mathcal{X}$, is

$$
\Omega_{\mathcal{O}}\otimes k\cong \mathfrak{m}/\mathfrak{m}^2;
$$

イロト イ押ト イヨト イヨト

E

 QQ

see Hartshorne, chapter 2, section 8.

Tangent space by curve

Tangent space by curve

Definition

Let $M\subset \mathbb{R}^n$ be a smooth submanifold. Define a vector bundle $T^{\mathcal{S}}M\to M$ (the "g" stands for "geometric") by

 $T^{g}M = \begin{cases} (m, v) \in M \times \mathbb{R}^{N} \text{ s.t. } v = \gamma'(0) \text{ for some smooth curve} \\ (m, v) \in M \times \mathbb{R}^{N} \text{ s.t. } (m, v) \in M \times \mathbb{R}^{N} \text{ s.t. } (m, v) \in M \text{ s.t. } (m, v) \in M \text{ s.t. } (m, v) \in M \times \mathbb{R}^{N} \text{ s.t. } (m, v) \in M \text{ s.t.$ $\gamma : (-1,1) \rightarrow M$ with $\gamma(0) = m$ $\big\}$.

Let $\rho: \mathbb{R}^N \to V$ be a projection to n-dimensional subspace of \mathbb{R}^N s.t. • $p(x) = 0$

 \bullet p is a chart in a neighborhood U of x in M. Now, we can define isomorphism

$$
\tilde{p}: T^{\mathcal{B}}M|_U \to V \times V; \ \tilde{p}(m,v) = (p(m), p(v)).
$$

 Ω

イロト イ押 トイヨ トイヨ トーヨ

We now define

$$
\Phi:\Gamma_{\mathcal{T}^{\mathcal{B}}M}(U)\rightarrow \mathcal{T}M(U)
$$

by $\Phi(s)(f)(x) = D_{s(x)}f$ for $s: U \to T^gM|_U, f \in C^{\infty}_U(V)$ for $V \subset U$ open, and $x \in V$.

Proposition

The map Φ is an isomorphism of vector bundles.

Proof.

- We can assume $M = \mathbb{R}^n$
- It is enough to prove it on the stalks, so we aim to prove

$$
\Phi_{\mathsf{x}}: \{\gamma'(0)|\gamma:(-1,1)\to\mathbb{R}^n, \gamma(0)=0\}=\mathbb{R}^n\to \mathsf{Der}_\mathbb{R}((\mathcal{C}^\infty_{\mathbb{R}^n})^+,\mathbb{R})
$$

is an isomorphism.

 Ω

Thank you!

イロト イ部 トイヨ トイヨト

重

 299

Vahid Shahverdi (KTH) October 18, 2021 16 / 16