The tangent bundle of a smooth manifold or tangent sheaf of an algebraic variety (Chapter 2.5.2.)

Vahid Shahverdi

KTH Royal Institute of Technology

vahidsha@kth.se

October 18, 2021

Derivation

Let us recall the algebraic notion of derivation.

Definition

Let A be a ring, R an A-algebra and M an R-module. Then an A-derivation $D: R \rightarrow M$ is an A-linear morphism, which satisfies the Leibniz rule

 $D(ab) = aD(b) + bD(a), \forall a, b \in R.$

We denote the set of these by $Der_A(R, M)$. It has a natural structure of A-module.

Example

Let $M = R = C^{\infty}(\mathbb{R}^n)$ be the algebra of smooth real-valued functions on \mathbb{R}^n . For a chosen basis of \mathbb{R}^n , let $x_i : \mathbb{R}^n \to \mathbb{R}$ be the coordinate function $(x_1, ..., x_n) \to x_i$. Then $\frac{\partial}{\partial x_i}$ is a derivation on R.

イロン 不通 とうほう 不良 とうほ

Tangent space

Definition

let X be a variety (or a smooth manifold) and $x \in X$. Denote by \mathfrak{m} the maximal ideal of $\mathcal{O}_{X,x}$. We call $\mathfrak{m}/\mathfrak{m}^2$ the cotangent space of X at x, and define its algebraic dual $T_x X := \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$ to be the tangent space of X at x. Also, we say x is a smooth point of X if dim $T_x X = \dim X$.

Example

Let $X = \mathbb{A}^2$ be the affine plane and let a = (0, 0). Then $\mathcal{O}_{X,a} = k[x, y]_{(x,y)} = \{\frac{f}{g} | f, g \in k[x, y] \text{ and } g((0, 0)) \neq 0\}$ which is the localization of k[x, y] at the ideal (x, y). The unique maximal ideal corresponds to the ideal (x, y). Thus, $\mathfrak{m}/\mathfrak{m}^2 \cong \frac{(x,y)}{(x,y)^2} = k^{\oplus 2}$ and

$$\operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k) = \operatorname{Hom}_k(k^{\oplus 2},k) \cong k^{\oplus 2}$$

イロト 不得 トイヨト イヨト 二日

Tangent space of nodal curve

Let $X = V(y^2 - x^3 - x^2)$ be a nodal elliptic curve embedded in \mathbb{A}^2 . We want to calculate the tangent space of X at origin.

Image: A = 1 = 1

Tangent space of nodal curve

- First, we see the coordinate ring is $A(X) = \frac{k[x,y]}{(y^2 x^3 x^2)}$, which corresponds to functions that can define on the space X.
- Now, we can make the stalk of structure sheaf $\mathcal{O}_{X,a}$ for a = (0,0), which is the localization of the ring A(X) at origin a.
- The unique maximal ideal \mathfrak{m} is the localization of $\overline{(x, y)}$.
- In the next step, m/m² is localization of (x,y)/(y²-x³-x²)/((x²,y²,xy)/(y²-x³-x²), which is isomorphic to ((x,y)/(x²,xy,y²) ≅ k^{⊕2}. This shows dim_k T_(0,0)X = 2 despite the fact that X is one dimensional.

< □ > < □ > < □ > < □ > < □ > < □ >

Generators of maximal ideal of $C_0^{\infty}(\mathbb{R}^n)$

Lemma

Let $f \in C^{\infty}(\mathbb{R}^n)$ then for every $a \in \mathbb{R}^n$, $f(x) = f(a) + \sum_{i=1}^n g_i(x)(x_i - a_i)$ for some smooth function $g_i(x)$.

We can write f(x) - f(a) as

$$\int_0^1 \frac{d}{dt} f(a + t(x - a)) dt = \sum \int_0^1 \frac{\partial f}{\partial x_i} (a + t(x - a)) (x_i - a_i) dt$$
$$= \sum (x_i - a_i) \underbrace{\int_0^1 \frac{\partial f}{\partial x_i} (a + t(x - a))}_{=g_i(x)}$$

Proposition

 The maximal ideal
$$C_0^{\infty}(\mathbb{R}^n)$$
 is finitely generated by $\{x_1, ..., x_n\}$

 Vabid Shahverdi (KTH)

Some basic algebra facts

For a commutative ring R, we define dim R is the maximum length of chain of prime ideals of R.

 $\dim(R) = \max(\{n \mid \mathfrak{p}_0 \subsetneq ... \subsetneq \mathfrak{p}_n \text{ such that } \mathfrak{p}_i \text{ are prime ideal}\})$

Also, We define the height of a prime ideal \mathfrak{p} to be the maximum length of descending chain of prime ideals from \mathfrak{p} .

Some important theorems:

- Let X be a variety (or a smooth manifold) then dim $X = \dim \mathcal{O}_{X,x}$ for every $x \in X$.
- Krull dimension theorem: Let R be Noetherian ring, and let prime ideal p is generated by d elements then ht(p) ≤ d.
- Nakayama lemma: Let R be a local Noetherian ring with the maximal ideal m then the minimum number of generator of m is equal to dim_k m/m², where k = R/m

イロト イヨト イヨト イヨト 三日

Proposition

Let X be a variety (or a smooth manifold) then we have the followings:

- dim_k $T_x X \ge$ dim X, and for a smooth manifold, always equality happens.
- **2** We endow k with an $\mathcal{O}_{X,x}$ -module structure via the following law :

$$f.\alpha = f(x).\alpha$$

for $f \in \mathcal{O}_{X,x}$ and $\alpha \in k$. Then $T_x X \cong \text{Der}_k(\mathcal{O}_{X,x}, k)$.

< □ > < □ > < □ > < □ > < □ > < □ >

Sketch of proof

Proof.

Part a)

We want to prove

 $d := \dim_k \operatorname{Hom}(\mathfrak{m}/\mathfrak{m}^2, k) = \dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim \mathcal{O}_{X,x} = \dim X$

• Since m is **finitely generated**, by Nakayama's lemma we have m is generated by *d* elements.By Krull theorem,

$$\dim \mathcal{O}_{X,x} = \operatorname{ht} \mathfrak{m} \leq d.$$

Note that for a smooth manifold of dimension n, we have

$$\mathfrak{m}/\mathfrak{m}^2 = (x_1, ..., x_n)/(x_1^2, x_1x_2, ..., x_ix_j, ..., x_n^2) \cong \mathbb{R}^n$$

A D F A B F A B F A B

Proof.

Part b)

• Let
$$D \in \text{Der}_k(\mathcal{O}_{X,x}, k)$$
. If $f, g \in \mathfrak{m}$, then
 $D(fg) = g(x)D(f) + f(x)D(g) = 0$, thus $D|_{\mathfrak{m}} \in T_x X$

• Let $\phi : \mathfrak{m}/\mathfrak{m}^2 \to k$, then we want to construct a map $D_{\phi} : \mathcal{O}_{X,x} \to k$. We claim that the appropriate choice is $D_{\phi}(f) = \phi(f_0)$, where $f = f_0 + k$ and $f_0 \in \mathfrak{m}$.

イロト 不得下 イヨト イヨト 二日

October 18, 2021

10/16

One can check that $D \to D|_{\mathfrak{m}} \to D_{D|_{\mathfrak{m}}}$ is identity and so is $\phi \to D_{\phi} \to D_{\phi}|_{\mathfrak{m}}$.

Corollary

Let $TM := \bigcup_{a \in M} T_a M$, and $\pi = TM \to M$ be the natural projection. For a smooth chart (U, ϕ) , we have

$$\Phi:\pi^{-1}(U) o \mathbb{R}^{2n}: \ \sum v^i rac{\partial}{\partial \phi_i}|_{m{
ho}} o (\phi(m{
ho}),v)$$

which is a bijection onto its image, so TM is a real vector bundle.

Corollary

For an n-dimensional manifold M, TM is an n-dimensional real vector bundle.

< □ > < □ > < □ > < □ > < □ > < □ >

October 18, 2021

11/16

Let X be a variety (or a smooth manifold) over k, and let $\Delta : X \to X \times_k X$ be the diagonal map. we define the cotangent sheaf (Kähler differential) $\Omega_X = \Delta^*(\mathcal{I}/\mathcal{I}^2)$. One can see that the fiber at each point $x \in X$, is

$$\Omega_{\mathcal{O}}\otimes k\cong \mathfrak{m}/\mathfrak{m}^{2};$$

< □ > < 同 > < 三 > < 三 >

October 18, 2021

12/16

see Hartshorne, chapter 2, section 8.

Tangent space by curve

2

イロト イヨト イヨト イヨト

Vahid Shahverdi (KTH)

Tangent space by curve

Definition

Let $M \subset \mathbb{R}^n$ be a smooth submanifold. Define a vector bundle $T^g M \to M$ (the "g" stands for "geometric") by

 $T^{g}M = \left\{ (m, v) \in M \times \mathbb{R}^{N} \text{ s.t. } \begin{array}{l} v = \gamma'(0) \text{ for some smooth curve} \\ \gamma : (-1, 1) \to M \text{ with } \gamma(0) = m \end{array} \right\}.$

Let $p : \mathbb{R}^N \to V$ be a projection to n-dimensional subspace of \mathbb{R}^N s.t. • p(x) = 0

• *p* is a chart in a neighborhood *U* of *x* in *M*. Now, we can define isomorphism

$$\tilde{p}: T^{g}M|_{U} \rightarrow V \times V; \ \tilde{p}(m,v) = (p(m), p(v)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We now define

$$\Phi: \Gamma_{T^{g}M}(U) \to TM(U)$$

by $\Phi(s)(f)(x) = D_{s(x)}f$ for $s: U \to T^g M|_U, f \in C_U^{\infty}(V)$ for $V \subset U$ open, and $x \in V$.

Proposition

The map Φ is an isomorphism of vector bundles.

Proof.

- We can assume $M = \mathbb{R}^n$
- It is enough to prove it on the stalks, so we aim to prove

$$\Phi_{\mathsf{x}}:\{\gamma'(\mathsf{0})|\gamma:(-1,1)\to\mathbb{R}^n,\gamma(\mathsf{0})=\mathsf{0}\}=\mathbb{R}^n\to\mathsf{Der}_{\mathbb{R}}((\mathit{C}^\infty_{\mathbb{R}^n})^+,\mathbb{R})$$

is an isomorphism.

イロト 不得 トイヨト イヨト 二日

Thank you!

2

イロト イヨト イヨト イヨト