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Overview

Goal:
Generalize notions such as ⊕,⊗,V ∨,Λ,Hom to vector bundles
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Summary

Define tensor product as a functor.
Introduce continuous functors on Vectk .
Show they induce to functors on Vect(B).
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Tensor Product

Tensor product of two factors,

_⊗k _ ∶ Vect2k → Vectk

(V ,W )→ V ⊗W

The tensor product of a pair A,B of linear maps is given by

(A⊗B)(v ⊗w) = (Av)⊗ (Bw)

It’s functorial since

(A⊗B) ○ (A′ ⊗B ′) = (AA′ ⊗BB ′)
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Tensor Product

Notice that

A⊗ (λB + µB ′) = λ ⋅ (A⊗B) + µ ⋅ (A⊗B ′)

Repeating this for the first factor shows that (A,B)↦ A⊗B is a
bilinear map, therefore continuous!
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Continuous functor

Definition. An (p,q)-ary continuous functor of k-vector spaces is
a functor

F ∶ (Vectk)p × (Vectop
k )q → Vectk

from (p + q)-tuples of finite-dimensional k-vector spaces to finite-
dimensional k-vector spaces which is continuous in the following
sense:
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Continuous functor

For
V ,W ∈ (Vectk)p × (Vectop

k )q

Homk(V ,W ) F→ Homk(F (V ),F (W ))

is continuous map of vector spaces.

We showed this is true for

(A,B)→ A⊗B
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Main idea

Proposition 2.4.10. Given any (p,q)-ary continuous functor F of
k-vector spaces, there is an induced functor

F ∶ Vectk(B)p × (Vectk(B)op)q → Vectk(B)

which acts like F on each fiber of B
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Proof sketch

Following the procedure for ⊗ we get an intuition for the general
construction.

Given E ,E ′ ∈ Vectk(B), define

E ⊗ E ′ = ⊔
b∈B

Eb ⊗ E ′

b

Generally, given E1, . . . ,Ep+q, define

F (E1, . . . ,Ep+q) = ⊔
b∈B

F ((E1)b, . . . , (Ep+q)b)

Now we need a topology which allows for local trivializations!
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Proof sketch

We have local trivializations for E and E ′,

φ̃α ∶ kn ×Uα → EUα , ψ̃α ∶ km ×Uα → E ′

Uα

whose restrictions to the fibers are denoted by φαb , ψ
α
b .

Define the bijection

Φα ∶ (kn ⊗ km) ×Uα → (E ⊗ E ′)Uα

(v ⊗w ,b)↦ (φαb ⊗ ψαb )(v ⊗w)

Now induces a topology on (E ⊗ E ′)Uα . Generally,

Φα ∶ F (kn1 , . . . , knp+q) ×Uα → F (E1, . . . ,Ep+q)∣Uα

(y ,b)↦ F (φb,1, . . . , φ−1
b,p+q)(y)
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Proof sketch

Now check that the cocycles are continuous

Φ−α ○Φβ ∶ (kn ⊗ km) ×Uαβ → (kn ⊗ km) ×Uαβ

(v ⊗w ,b)↦ [(φ−αb ⊗ ψ−αb )(φβb ⊗ ψ
β
b )(v ⊗w),b]

This is the step where we use the continuity of the functor! Our
cocycles are exactly

(φ−αb φβb ⊗ ψ
−α
b ψβb ) = cαβ ⊗ c ′αβ ∶ Uαβ → GL(kn ⊗ km)

In general, the cocycles are given by

F (c1,αβ, . . . , c−1
p+q,αβ) ∶ Uαβ → GL(F (kn1 , . . . , knp+q))
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Proof sketch

Lastly, for any morphism of vector bundles f ,g , with fb,gb being
the restriction to the fibers we can consider

f ⊗ g = ⊔
b∈B

fb ⊗ gb

Clearly, respects the vectorspace structure but why is it continuous?

It looks like fα ⊗ gα on the trivializations and functoriality makes
sure that the transition maps are respected.
In general

F (f1, . . . , fp+q) = ⊔
b∈B

F (fb,1, . . . , fb,p+q)
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Picard group

Assume E ,E ′ are line bundles.

Notice that E ⊗ E ′ is also a line bundle

It can be seen that E ⊗ E∨ ≅ k ×B because the transition
functions of E∨ are inverses to E .

This allows us to define the Pick(B) as the set of isomorphism
classes of vector bundles with tensorproduct.
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End

The end!
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