DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 5

Karl Palmskog (palmskog@kth.se)

2021-09-13

Last seminar:

CTMCs and CSL

Today:

- Effiency of algorithms
- Towards statistical verification using CSL

$$\begin{split} \phi &::= \top \mid a \mid \neg \phi \mid \phi \land \phi \mid P_{\geq \theta}(\psi) \\ \psi &::= \phi \; U^{\leq t} \; \phi \\ & t \in R^{\geq 0}, \; \; \theta \in [0, 1] \end{split}$$

- we want decide $\mathcal{M}, s \models P_{\geq \theta}(\psi)$
- numerical algorithms compute a measure p on ψ and compare to θ
- ullet computation uses the CTMC rate matrix Q
- may take many iterations over Q to reach certainty
- in the literature, state spaces of size greater than 10⁹ considered intractable

- abstract our problem to smaller models
- use sparse matrix representations
- computing probabilities is too hard
- symbolic representations and reasoning

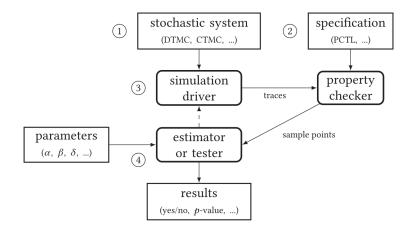
- Monte Carlo experiments of stochastic systems has long history
- idea: randomly pick transitions/intervals up to some bound
- result is a trace for the system (path prefix)
- generally: each trace is independent of another

- trace analysis and generation can be decoupled
- underlying system could be DTMC, CTMC, or more general process

- want to know if $\mathcal{M}, s \models P_{\geq \theta}(\psi)$
- generate trace of \mathcal{M} (prefix of the path π)
- $\bullet\,$ check if $\psi\,$ holds in the trace or not
- continue to generate traces and keep track of outcomes
- $\bullet\,$ analyze all outcomes and decide if probability that ψ holds is $\geq \theta$ or not

- sampling traces can (usually) never lead to absolute certainty like numerics
- but each trace (usually) cheap to maintain
- in many systems, we can continue to sample until time bound reached or acquired enough certainty

Overview of the statistical model checking process



- each trace has a "true" (1) or "false" (0) outcome
- each outcome can be viewed as observation of Bernoulli random variable X with parameter p (underlying probability)
- observations input to either hypothesis tester or estimator

- we have mutually contradicting hypotheses:
 - $H_0: p \ge \theta$
 - *H*₁ : *p* < θ
- many hypothesis tests available
- \bullet tests can take parameters α and β which bound the probability of error
- example: single sampling plan (SSP)
- example: sequential testing

Decision

Truth	accept H_0 , reject H_1	<i>reject</i> H_0 , <i>accept</i> H_1
$p \geq \theta$: H_0 true, H_1 false	correct (>1 – α)	type I error (≤α)
$p < \theta$: H_0 false, H_1 true	type II error ($\leq \beta$)	correct (>1 – β)

The conditions inside parentheses are on the probability for the given outcome.

- determine n > 0 consistent with given α and β bounds
- obtain observed outcomes x_i from traces, $1 \le i \le n$
- accept H_0 whenever we have

$$\sum_{i=1}^n x_i/n \ge \theta$$

• otherwise, accept H_1

- in SSP, *n* must be determined beforehand
- sequential tests make "dynamic" decisions after each outcome
- canonical example: the sequential probability ratio test (SPRT)
- SPRT minimizes the sample size under certain assumptions