
DD2552 - Seminars on Theoretical Computer
Science, Programming Languages and Formal

Methods, Seminar 1

Karl Palmskog (palmskog@kth.se)

2021-08-30

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Course Contents

course run is about specification and verification of systems
with stochastic behavior
includes specification formalisms for, and mathematical
models of, stochastic systems
includes methods and tools for verifying model properties
for large systems with complex behavior, we leverage
statistical approaches (sampling)
most areas covered are highly active research topics!

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Course Overview

highly research-based course for 7.5 ECTS credits
assumes knowledge of logic, programming, and probability
seminars twice every week in period 1

Mondays 13-15
Thursday 10-12

all seminars take place in room 4523

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Course Examination

examination is by:
homework set (graded, determines course grade)

seminar participation strongly recommended
seminars driven by topic and research papers . . .
. . . but the aim is to have lots of interaction

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

About Me

M.Sc. Computer Science and Engineering, KTH, 2007
Ph.D. Computer Science, KTH, 2014
researcher at U. of Illinois and U. of Texas until 2019
researcher at KTH since 2019
main interests:

formal verification using proof assistants (Coq, HOL4)
programming language metatheory
distributed systems

https://setoid.com

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

https://setoid.com

Randomness in Computer Science and Engineering

domain is inherently random (e.g., networks, biological systems)
random arrival of requests
random interaction among actors

processes execute a randomized algorithm
flip coin to determine next action
run random function on whether to act (blockchains)

requirement: behavior captured by probability distribution

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Functional and Non-functional Requirements

system requirements can be functional or non-functional
functional: what is a system supposed to do?

e.g., specification of output given knowledge of input
“if x is nonnegative, then the output is a prime larger than x”
studied in other courses

non-functional: what is a system supposed to be like?
e.g., not leak confidential information
e.g., provide an answer within a time limit
“every received request is answered within t seconds”
focus of this course

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Non-functional Requirements Mostly Outside Scope

security & privacy properties
hard temporal constraints, e.g., WCET
asymptotic behavior, such as execution time growth with input

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Non-functional requirements we want to consider

what happens in the typical or average case?
how low is the chance of a crash?
how high is the chance of responding quickly to a request?

“within time t, the probability that the number of messages in the
queue q will be greater than 5 is less than 0.01”

“within time t, if a network node crashes, the probability that it will
recover within 5000 steps is between 0.9 and 0.99”

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

General Approach in This Course

specify the desired property as a formula φ in a logic
consider a modelM of the system
determine (using deduction/algorithm/tool) whetherM
satisfies φ, i.e., whetherM |= φ
problem: logic may have to be extremely expressive
problem: system can have large state space
problem: system can be inaccessible(!)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Course Trajectory

stochastic logics: PCTL, QuaTex, . . .
models: DTMC, CTMC, . . .
verification: deductive, symbolic, statistical, . . .
tools: PRISM, Ymer, UPPAAL, . . .

Main course literature:

Gul Agha and Karl Palmskog
A Survey of Statistical Model Checking
TOMACS, 28(1):6:1–6:39, January 2018

https://doi.org/10.1145/3158668

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

https://doi.org/10.1145/3158668

Reminder: CTL, a Non-Stochastic Temporal Logic

φ ::= > | a | ¬φ |φ ∧ φ
ψ ::= φ | X φ | φU φ

a: atomic proposition
¬φ: negation
φ ∧ φ′: conjunction
X φ: next
φU φ′: until

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Reminder: Non-Stochastic Transition Systems

M = (S,→, L) where

S is a (finite) set of states
→⊆ S × S
L : S 7→ 2AP (AP are atomic propositions)

Transitions from state to state are “taken” non-deterministically.

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Reminder: CTL Model Checking Problem

M, s |= φ

can be determined using CTL’s semantics (tedious, no
termination guarantee)
can be determined using an efficient CTL model checking
algorithm (but PSPACE-hard problem)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

CTL with Bounded Until

φ ::= > | a | ¬φ |φ ∧ φ
ψ ::= φ | X φ | φU φ | φU≤t φ

t ∈ Z≥0

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

CTL with Bounded Until Example

Consider formula φ U≤t φ′ and path starting with state s where it
holds:

s s1 . . . sk sk+1 . . . st
φ φ . . . φ φ′ . . . >

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Probabilistic CTL

φ ::= > | a | ¬φ |φ ∧ φ | P≥θ(ψ)
ψ ::= φ | X φ | φU φ | φU≤t φ

t ∈ Z≥0 θ ∈ [0, 1]

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Reminder: Discrete Time Markov Chains

M = (S, si ,M, L) where

S is a (finite) set of states
si ∈ S is the initial state
M : S × S 7→ [0, 1] defines transition probabilities, where

for all s ∈ S,
∑

s′∈S M(s, s ′) = 1
L : S 7→ 2AP (AP are atomic propositions)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Example Discrete Time Markov Chain

S = {s1, s2, s3, s4, s5}
L(s1) = {p}
L(s2) = {p}
L(s3) = {}
L(s4) = {p}
L(s5) = {q}

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

Discrete Time Markov Chains and PCTL

Slogan: “P≥θ(ψ) is true in s when the probability that ψ holds on
paths starting from s is greater than or equal to θ”

Example formula:

P≥0.98(pendingU≤10 done)

Intuition: “With probability 0.98 or more, pending holds until done
holds within 10 steps”

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Programming Languages and Formal Methods, Seminar 1

