DD2552 - Seminars on Theoretical Computer

Science, Programming Languages and Formal
Methods, Seminar 1

Karl Palmskog (palmskog@kth.se)

2021-08-30

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Course Contents

@ course run is about specification and verification of systems
with stochastic behavior

@ includes specification formalisms for, and mathematical
models of, stochastic systems

@ includes methods and tools for verifying model properties

o for large systems with complex behavior, we leverage
statistical approaches (sampling)

@ most areas covered are highly active research topics!

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Course Overview

@ highly research-based course for 7.5 ECTS credits
@ assumes knowledge of logic, programming, and probability

@ seminars twice every week in period 1
e Mondays 13-15
e Thursday 10-12

@ all seminars take place in room 4523

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Course Examination

@ examination is by:
o homework set (graded, determines course grade)

@ seminar participation strongly recommended
@ seminars driven by topic and research papers ...
@ ... but the aim is to have lots of interaction

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

@ M.Sc. Computer Science and Engineering, KTH, 2007
@ Ph.D. Computer Science, KTH, 2014
@ researcher at U. of lllinois and U. of Texas until 2019
@ researcher at KTH since 2019
@ main interests:
o formal verification using proof assistants (Coq, HOL4)
e programming language metatheory
o distributed systems
@ https://setoid.com

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

https://setoid.com

Randomness in Computer Science and Engineering

e domain is inherently random (e.g., networks, biological systems)
e random arrival of requests
e random interaction among actors
@ processes execute a randomized algorithm
e flip coin to determine next action
e run random function on whether to act (blockchains)
@ requirement: behavior captured by probability distribution

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Functional and Non-functional Requirements

@ system requirements can be functional or non-functional
e functional: what is a system supposed to do?
e e.g., specification of output given knowledge of input
e "if x is nonnegative, then the output is a prime larger than x"
e studied in other courses
@ non-functional: what is a system supposed to be like?
e e.g., not leak confidential information
e e.g., provide an answer within a time limit
o “every received request is answered within t seconds”
o focus of this course

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Non-functional Requirements Mostly Outside Scope

@ security & privacy properties
@ hard temporal constraints, e.g., WCET
@ asymptotic behavior, such as execution time growth with input

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Non-functional requirements we want to consider

@ what happens in the typical or average case?
@ how low is the chance of a crash?
@ how high is the chance of responding quickly to a request?

“within time t, the probability that the number of messages in the
queue g will be greater than 5 is less than 0.01"

“within time t, if a network node crashes, the probability that it will
recover within 5000 steps is between 0.9 and 0.99"

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

General Approach in This Course

@ specify the desired property as a formula ¢ in a logic

@ consider a model M of the system

@ determine (using deduction/algorithm/tool) whether M
satisfies ¢, i.e., whether M = ¢

@ problem: logic may have to be extremely expressive

@ problem: system can have large state space

@ problem: system can be inaccessible(!)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Course Trajectory

@ stochastic logics: PCTL, QuaTex, ...

@ models: DTMC, CTMC, ...

@ verification: deductive, symbolic, statistical, ...
@ tools: PRISM, Ymer, UPPAAL, ...

Main course literature:

Gul Agha and Karl Palmskog
A Survey of Statistical Model Checking
TOMACS, 28(1):6:1-6:39, January 2018

https://doi.org/10.1145/3158668

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

https://doi.org/10.1145/3158668

Reminder: CTL, a Non-Stochastic Temporal Logic

pu=Tlal-¢loN
Ypr=¢[Xo|loUg

@ a: atomic proposition
@ —¢: negation

@ ¢ A ¢': conjunction
e X ¢: next

e ¢oU¢: until

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Reminder: Non-Stochastic Transition Systems

M = (§,—, L) where

e Sis a (finite) set of states
e -CSxS
o L: S+ 2P (AP are atomic propositions)

Transitions from state to state are “taken” non-deterministically.

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Reminder: CTL Model Checking Problem

M,s = ¢

@ can be determined using CTL's semantics (tedious, no
termination guarantee)

@ can be determined using an efficient CTL model checking
algorithm (but PSPACE-hard problem)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

CTL with Bounded Until

pu=Tla|l-¢loNg
vi=¢| X oUp|oUS g

tez20

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

CTL with Bounded Until Example

Consider formula ¢ USt ¢/ and path starting with state s where it
holds:

s S ... Sk Sk+1 ... St

¢ ¢ ... & ¢ ... T

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Probabilistic CTL

pu=T|a[=9[pAd]|Pso(v)
bi=¢|Xo|oUo| U9
tez2% gco,1]

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Reminder: Discrete Time Markov Chains

M = (S,si, M, L) where

S is a (finite) set of states

si € S is the initial state

M: S x S+ [0, 1] defines transition probabilities, where
o forallse S, > sM(s,s')=1

o L: S 24P (AP are atomic propositions)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Example Discrete Time Markov Chain

A@/\@ M S1 S92 S3 S4 S5
s1 |0 05 0 05 0

s2 |0 0 1 0 0

s3 10 1 0 0 0

/\ s4 |05 0 0 0 0.5
@ O ss/0 0 0 1 0

© S={s1,%,53,5,55}
o L(s1) = {p}

o L(s2) = {p}

o L(s3) ={}

o L(ss) = {p}

o L(ss) ={qa}

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Discrete Time Markov Chains and PCTL

Slogan: “Pxy() is true in s when the probability that ¢ holds on
paths starting from s is greater than or equal to 6"

Example formula:

P>0.08(pending ys1o done)

Intuition: “With probability 0.98 or more, pending holds until done
holds within 10 steps”

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

