4 THE NATURAL NUMBERS [1}

It should be noted that the integer & — @ has been defined only when
b > a. 'The interpretation of the symbol b — a as a negative tnteger
when b < a will be discussed later (p. 54 et seq.).

It is often eonvenient to use one of the notations, b > a (read, “b is
greater than or equal to a"’) or & < b (read, ‘s is less than or equal to
"), to express the denial of the statement, ¢ > b. Thus, 2 > 2, and
3> 2

We may slightly extend the domain of positive integers, representod
by boxes of dots, by introducing the integer zero, represented by a
completely empty box. If we denote the empty box by the usual symbol
0, then, according to our definition of addition and multiplieation,

a+0=aqa,

a0 = 0,
for every integer a. ¥or ¢ 4+ 0 denotes the addition of an empty box
to the box a, while a-0 denotes 2 box with no columns ;le. an empty
box. Ifis then. natural to extend the definition of subtraction by setting

a—a=1

for every integer a. These are the characteristic arithmetical propertics
of zero.

Geometrical models like these boxes of dots, such as the ancient
abacus, were widely used for numerical caleulations until late in the
middle ages, when they were slowly displaced by greatly superior
symbolie methods based on the decimal system.

2. The Representation of Integers

We must carefully distinguish between an integer and the symbol,
5 V, ..., ete., used to represent it. In the decimal system the ten
digit symbols, 0, 1, 2, 3, -- - , 9, are used for zero and the first nine posi-
tive integers. A larger integer, stch as “three hundred and seventy-
two,” can be expressed in the form

mm+m+2=34m+%m+q{

and is denoted in the decimal system by the symbol 372, Here the
important point is that the meaning of the digit symbols 3, 7, 2 depends
on their position in the units, tens, or hundreds place. With this
“positional notation’’ we can represent any integer by using only the
ten digit symbols in various combinations. The general rule is to express
an integer in the form illustrated by

z=a.100+b.10°+¢. 10 + 4,
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whero the digits g, b, ¢, d are integers from zero to nine. The integer 2
is then represented by the abbreviated symbeol

abed.

We note in passing that the coefficients d, ¢, b, a are the remainders left
after successive divisions of z by 10. Thus

10)372 Remainder

10)37 2
1003 7
0 3

The particular expression given above for z can only represent integers
less than ten thousand, since larger integers will require five or more digit
symbols. If z is an integer between ten thousand and one hundred
thousand, we can express it in the form

zema.10°4+b.10°4+¢c.10°+d- 10 + ¢

and represent it by the symbol abcde. A similar statement holds for
integers between one hundred thousand and one million, ete. It is very
useful to have a way of indicating the result in perfect generality by a*
single formula. We may do this if we denote the different coefficients,
¢, d, ¢, --- , by the single letter @ with different “‘subscripts,” @, a,
@, a3, +++ , and indicate the fact that the powers of ten may be as large
as necessary by denoting the highest power, not by 10° or 10" as in the
examples above, but by 10", where # is understood to stand for an arbi-
trary integer. Then the general method for representing an integer 2
in the decimal system is to express 2 in the form

) 250y~ 10"+ @uy- 10"+ oo + a1 - 104 ao,
and to represent it by the symbol
nlp—atly—g ~»+ Qo .

As in the special case above, we see that the digits o, a1, a2, -+ , @s
are simply the successive remainders when z is divided repeatedly by 10.

In the decimal system the number ten is singled out to serve as a hase.
The layman may not realize that the selection of ten is not essential,
and that any integer greater than one would serve the same purpose.
For example, a septimal system (base 7) could be used. In such a sys-
tem, an integer would be expressed as

2) ba o 7%+ bt - 1" A een by T+ by,
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where the b’s are digits from zero to six, and denoted by the symbol
bubpy +« bibo.

Thus “‘one hundred and nine”’ would be denoted in the septimal system '

by the symbol 214, meaning
2.74+1.7+4
As an exercise the reader may prove that the general rule for passing
from the base ten to any other base B is to perform successive divisions
of the number z by B; the remainders will be the digits of the number in
the system with base B. For example:
7)109 Remainder

: 5 4
N2 1
0 2

109 (decimal system) = 214 (septimal system).

It is nataral to ask whether any particular choice of base would be most
desirable. We ghall see that too small & base hag disadvantages, while
a large base requires the learning of many digit symbols, and an extended
multiplication table. The ehoice of twelve as base has been advocated,
since twelve is exagtly divisible by two, three, four, and six, and, as a
result, work involving division and fractions would often be simplified.
To write any integer in terms of the base twelve (duodecimal system),
we require two new digit symbols for ten and eleven. Let us write «
for ten and 8 for eleven, Then in the duodecimal system ‘‘twelve”
would be written 10, “twenty-two’’ would be le, “‘twenty-three’’ would
be 18, and ‘‘one hundred thirty-one’’ would be of.

The invention of positiongl notation, attributed to the Sumerians or
Babylonians and developed by the Hindus, was of enormous significance
for civilization. Rarly systems of numeration were based on a purely
additive prineiple. In the Roman symbolism, for example, one wrote

CXVIII = one hundred 4 ten 4+ five + one + one 4- one.

The Egyptian, Hebrew, and Greek systems of numeration were on the
same level. One disadvantage of any purely additive notation is that
more and more new symbols are needed as numbers get larger. (Of
course, early scientists were not troubled by our medern astronomical
or stomic magnitudes.) But the chief fault of ancient systems, such asg
the Roman, was that computation with numbers was so difficult that
only the specialist could handle any but the simplest problems. It is
quite different with the Hindu positional system now in use, This was
introduced into medieval Europe by the merchants of Italy, who learned
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it from the Moslems. The positional system has the agreeable property
that all mumbers, however large or small, can be represented by the use
of a small set of different digit symbols (in the decimal system, these are
the “Arabic numerals” 6, 1, 2, --- ,9). Along with this goes the more
important advantage of ease of computation. The rules of reckening
with numbers represented in positional notation can be gtated in the
form of addition and multiplication tables for thedigits that can be memo-
rized once and forall.  The ancient art of computation, once confined to a
few adepts, is now taught in elementary school. Therse are not many

instances where scientific progress has so deeply affected and facilitated
everyday life.

3. Computation in Systems Other than the Decimal

The use of ten as a base goes back to the dawn of civilization, and i
undoubtedly due to the fact that we have ten fingers on which to count,
But the number words of many languages show remnants of the use of
other bases, notably twelve and twenty. In English and German the
words for 11 and 12 are not constructed on the deeimal principle of com-
bining 10 with the digits, as are the “‘teens,”” but are linguistically inde-
pendent of the words for 10.  In French the words “‘vingt’” and “‘quatre-
vingt’? for 20 and 80 suggest that for some purposes & system with base
20 might have been used. In Danish the word for 70, ‘‘halviirsinds-
tyve,”” means half-way (from three times) to four fimes twenty. *The
Babylonian astronomers had a system of notation that was partly
sexagesimal (base 60), and this is believed to account for the customary
division of the hour and the angular degree into 60 minutes.

In a system other than the decimal the rules of arithmetic are the same,
but one must use different tables for the addition and multiplication of
digits. Accustomed to the decimal system and tied to it by the number
words of our language, we might at first find this a little confusing. Let
us try an example of multiplication in the septimal system. Before
proceeding, it is advisable to write down the tables we shall have to use:

Addition Multiplication

3 4 5 6 2 3 4 b6 @6
4 5 6 2 3 4 b 6
5 6 10 11 4 6 11 13 16
6 10 11 12 6 12 156 21 24
10 11 12 13 11 15 22 26 33
1 12 13 14 13 21 26 34 42
12 13 14 15 15 24 33 42.51
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Let us now multiply 265 by 24, where these number symbols are
written in the septimal system. (In the decimal system this would be
equivalent to multiplying 145 by 18.) The rules of multiplication are
the same as in the decimal system. We begin by multiplying 5 by 4,
which is 26, as the multiplication table shows.

265
24

1456
563

rrr——

10416
We write down 6 in the units place, “carrying” the 2 to the next
place. Then we find 4.6 = 33, and 33 + 2 = 35. We write down 5,
and proceed in this way until everything has been multiplied out. Add-
ing 1,456 4- 5,630, we get 6 + 0 = 6 in the units place, 5 + 3 = 1lin
the sevens place. Again we write down 1 and keep 1 for the forty-
nines place, where we have 1 4- 6 4+ 4 = 14. The final result is

265.24 = 10,418, '
To check this result we may multiply the same numbers in the decimal
gystem. 10,416 (septimal system) may be written in the decimal

system by finding the powers of 7 up to the fourth: 7° = 49, 7° = 343,
7' = 2,401. Hence 10416 = 2,401 + 4.49 + 7 - 6, this evalustion
being in the decimal system. Adding these numbers we find that 10,416
in the septimal system is equal to 2,610 in the decimal system. Now
we multiply 145 by 18 in the decimal system; the result is 2,610, so
the caleulations check,

Exereises: 1) Set up the addition and multiplication tables in the duodecimal
system and work some examples of the same sort.

2) Express “‘thirty” and “one hundred and thirty-three’ in the systems with
the bases 5, 7, 11, 12,

3) What do the symbols 11111 and 21212 mean in these gystems?

4) Form the addition and multiplication tables for the bases 5, 11, 13.

From a theoretical point of view, the positional system with the
base 2 is singled out as the one with the smallest possible base. The
only digits in this dyadic system are 0 and 1; every other number 2
is represented by a row of these symbols. The addition and raultiplica~
tion tables consist merely of the rules 1 + 1 = 10 and 1.1 = 1, But
the disadvantage of this system is obvious: long expressions are needed
to represent small numbers. Thus seventy-nine, which may be ex-
pressed as 1-2° + 0-2° 4- 0-2* + 1.2° + 1-2° 4 1.2 + 1, is written
in the dyadic system as 1,001,111,
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As an illustration of the simplicity of multiplication in the dyadic
gystem, we shall multiply seven and five, which are respectively 111
and 10L. Remembering that 1 -+ 1 = 10 in this system, we have

111

101

i11
111

100011 = 2°+ 2+ 1,

whieh is thirty-five, as it should be.

Gottfried Wilhelm Leibniz (1646-1716), one of the greatest intellects
of his time, was fond of the dyadic system. To quote Laplace: “Leib-
niz saw in his binary arithmetic the image of creation. He imagined
that Unity represented God, and zero the void; that the SBupreme Being
drew all beings from the void, just as unity and zero express all numbers
in his system of numeration.” ‘

Exercise: Consider the question of representing integers with the base a.
In order to name the integers in this system we need words for the digits
0,1, -+, 2 — 1and for the various powers of a: e, a?, 6%, +-- . How many different
number words are needed to name all numbers from zero to one thousand, for
a =28 4 B, -, 157 Which base requires the fewest? (Hxamples: If
a = 10, we need ten words for the digits, plus words for 10, 100, and 1000, niaking
a total of 13. For a = 20, we need twenty words for the digits, plus words for
20 and 400, making a total of 22. 1If a = 100, we need 100 plus 1.}

*§2, THE INFINITUDE OF THE NUMBER SYSTEM.
MATHEMATICAL INDUCTION

1. The Principle of Mathematical Induction

There is no end to the sequence of integers 1, 2, 3, 4, -+ ; for after
any integer n has been reached we may write the next integer, n -+ 1.
We express this property of the sequence of integers by saying that
there are infinitely many integers. The sequence of integers represents
the simplest and most natural example of the mathematical infinite,
which plays a dominant réle in modern mathematics. Everywhere in
this book we shall have to deal with collections or “sets” containing
infinitely many mathematical objects, like the set of all points on a line
" or the set of all triangles in a plane. The infinite sequence of integers
" is the simplest example of an infinite set.
~ Thestep by step procedure of passing from #» to n -+ 1 which generates
the infinite sequence of integers also forms the basis of onc of the most
fundamental patterns of mathematical reasoning, the prineiple of




IDEAS AND METHODS
Second Edition

BY
RICHARD COURANT

Late of the
Courant Institute of Mathematical Sciences
New York University

~ AND
HERBERT ROBBINS

Rutgers University

Revised by
JAN STEWART

Mathematics Institute
University of Warwick

New York Oxford
OXFORD UNIVERSITY PRESS
1896

AN ELEMENTARY APPROACH TO




