The Prime Number Theorem

number theory. The main goal of finite group theory is to
give a complete classification of all the “simple groups.”
A major breakthrough occurred in 1963 when Walter
Feit and John Thompson proved that every simple group
is either cyclic or has an even number of elements. This
had been conjectured by Burnside many years earlier. Fol-
lowing the inspiration of the Feit-Thompson success, a tre-
mendous surge of new activity erupted in finite group the-
ory. Today specialists in this arca believe they are within a
stone’s throw of a complete classification of the simple

groups.

Further Readings. See Bibliography

D.Gorenstein.

The Prime Number

Theorem

g 1{E THEORY of numbers is simultanecously one
of the most elementary branches of mathematics
in that it deals, essentially, with the arithmetic

propertics of the integers 1,2, 3, . . . and one of
the most difficult branches insofar as it is laden with diffi-
cult problems and difficult techniques.

Among the advanced topics in theory of numbers, three
may be selected as particularly noteworthy: the theory of
partitions, Fermat’s “Last Theorem,” and the prime num-
ber theorem. The theory of partitions concerns itself with
the number of ways in which a number may be broken up
into smaller numbers. Thus, including the “null” partition,
two may be brokenupas2or 1 + 1. T hree may be broken
up as 8, 2 + 1,1 + 1+ 1, four may be broken up as 4,
34+1,2+2,2+1+1,1+1+1+ 1. The number of
ways that a given number may. be broken up is far from a
simple matter, and has been the object of study since the
mid-seventeen hundreds. The reader might like to experi-
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ment and see whether he can systematize the
verify that the number 10 can be
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y wish that the problem would be
settled,
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some of the central objects of mathema
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these decompositions cannot he
carried further. The numbers 2, 3, 5 7,. .. are the prime

Let us make a list of the first few prime numbers:
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23 29
31 87 41 43 47 53 59 61 g7 71
78 79 83 89 97 101 108 107 109 118 . ..

This list never ends, Euchd already had proved that there
are an infinite number of primes. Euclid’s proofis easy and
elegant and we will give it,

Suppose we have 2 complete list of all ¢
bers up to a certain prime p,,.
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Table of the First 2500
Prime Numbers
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of'all the primes up to p,. Now N is larger than g, (for it is
certainly more than twice its size). When N is divided by 2t
goes 35+ - - . p times and leaves a remainder 1. When
it is divided by 3, it goes 2 -5 - . . . Pm times and leaves a
remainder 1. Similarly, it leaves a remainder of 1 when di-
vided by any of the primes 2, 3, 5, . . . , D -

Now N is either a prime number or it isr’t. I it is a prime
number, it is a prime number greater than p,. If it isn’t a
prime number, it may be factored into prime numbers.
But none of its prime factors can be 2, 3, b,. .., py as we
just saw. Therefore there is a prime number greater than
Pm. :

The logical argument (actually, the dilemma, which
forces one to the same conclusion whichever path one is
compelled to take) tells us that the list of primes never
ends.

The second feature of the list of primes that strikes one
is the absence of any noticeable patiern or regularity, Of
course all the primé numbers except 2 are odd, so the gap
between any two successive primes has to be an even num-
ber. But there seems to be no rhyme or reason as to which
even number it happens to be.

There are nine prime numbers between 9,999,900 and
10,000,000;

9,999,901 9,999,907 9,999,929 9,999,931

9,999,937 9,999,943 9,999,971 9,999,973
9,999,991,

But among the next hundred integers, from 10,000,000
to 10,000,100, there are only two:

10,000,019 and 10,000,079.

“Upon looking at these numbers, one has the feeling of
being in the presence of one of the inexplicable secrets of
creation,” writes Don Zagier in an outbursi of modern
number mysticism.

What is known about primes and what is not known or
conjectural would fill a large book. Here are some samples.
The largest known prime in 1979 was 921701 __ 1. There is
a prime between n and 2 for every integer n >'1. Is there
a prime between n2 and (n -+ 1)* for every n > 0? No one
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knows. Are there an infinity of primes of the form »* + 1
where n is an integer? No one knows. There are runs of
integers of arbitrary length which are free of primes. No
polynomial with integer coefficients can take on only prime
values at the integers. There is an irrational number 4 such
that [A*"] takes on only prime valuesasn =10,1,2,. . ..
(Here the notation [x] means the greatest integer =x.) Is
every even number the sum of two odd primes? No one
knows; this is the notorious Goldbach conjecture. Are
there an infinite number of prime pairs, such as 11;13 or
17;19 or 10,006,427;10,006,429 which differ by 2? This is
the problem of the twin primes, and no one knows the an-

- swer though most mathematicians are convinced that the
statement is very likely to be true.

Some order begins to emerge from this chaos when the
primes are considered not in their individuality but in the
aggregate; one considers the social statistics of the primes
and not the eccentricities of the individuals. One first makes
a large tabulation of primes. This is difficult and tedious
with pencil and paper, but with a modern computer it is
easy. Then one counts them to see how many there are up
to a given point. The function w(r) is defined as the num-
ber of primes less than or equal to the number n. The
function 7r(n) measures the distribution of the prime num-
bers. Having obtained it, it is only natural to compute the
ratio n/7r(n) which tells us what fraction of the numbers up
to a given point are primes. (Actually, it is the reciprocal of
this fraction.) Here is the result of a recent Computzition.

n r(n) n/m(n)
10 4 2.5
100 25 4.0
1000 168 6.0
10,000 1,229 8.1
100,000 9,692 10.4
1,000,000 78,498 12.7
10,000,000 664,579 15.0
100,000,000 5,761,455 17.4
1,000,000,000 50,847,554 19.7
10,000,000,000 455,052,512 22.0

Notice that as one moves from one power of 10 to the next,
the ratio n/7(n) increases by roughly 2.3. (For example,
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22.0 — 19.7 = 2.3} At this point, any mathematician
worth his salt thinks oflog, 10 (=2.80258 . . ) and on the
basis of this evidence, it is easy to formulate the conjecture

. . n
that 7({n) is approximately equal to Tog 7'

The more formal
statement that

Ilim w{n)/(nflog n) = !

is the famous prime number theorem. The discovery of
the theorem can be traced as far back as Gauss, at age fif-
teen (around 1792), but the rigorous mathematical proof
dates from 1896 and the independent work of C. de Ia
Vallée Poussin and Jacques Hadamard. Here is order ex-
tracted from confusion, providing a moral lesson on how

individual eccentricities can exist side by side with law and
order.

While the expression #
mation for 7(
have been in
this at the p
the most sat

Carl Friedrich Gauss
17771855

/log n is a fairly simple approxi-
n), it is not terribly close, and mathermaticians
terested in improving it. Of course, one does
rice of complicating the approximant. One of f
isfactory approximants to m(n) is the function

Jacques II&daﬂzm‘d
18651963
= 1 (log n)*
RW*=1+g;Mm+1) il

where {(z) designates the celebrated Riemann zeta func.

tion; {(z) = 1 +~él—z + é + 21; +....The accompanying
table shows what a remarkably good approximation R (n) is
to a(n): _
(n) Rin)
100,000,000 5,761,455 5,761,552
_ 200,000,000 11,078,987 11,079,090
300,000,000 16,252,325 16,252,355
400,000,000 21,336,326 21,336,185
500,000,000 26,355,867 26,355,517
600,000,000 31,824,703 31,324,629
700,000,000 36,252,931 36,252,719
800,000,000 41,146,179 41,146,248
900,000,000 46,009,215 46,009,949
1,000,000,000 50,847,534 50,847,455




The Prime Number Theorem

Let us turn, finally, to the question of twin prime pairs. It
is thought that there are an infinite number of such pairs,
though this is still an open question.

Why do we believe it is true, even though there is no
proof? First of all, there is numerical evidence; we find
more prime pairs whenever we look for them; there does
pot seem to be a region of the natural number system so
remote that it lies beyond the largest prime pair. But more
than that, we have an idea how many princ pairs there are.
We can get this idea by noticing that the occurrence of
prime pairs in a table of prime numbers secem to be unpre-
dictable or random. This suggests the conjecture that the
chance of two numbers n and n + 2, both being prime, acts
like the chance of getting a head on two successive tosses of
a coin. If two successive random experiments are indepen-
dent, the chance of success on both is the product of the
chances of success on either; for example, if one coin has
probability £ of coming up heads, two coins have probabil-
ity + X 4 = 4 of coming up a pair of heads.

Now the prime number theorem, which has been
proved, says that if n is a large number, and we choose a
number # at tandom between 0 and =, the chance that x 18

prime will be “about” The bigger n is, the better is

logn’

the approximation given by to the proportion of

log n
primes in the numbers up to %, :

If we trust our feeling that the occurrence of twin
primes is like two coins coming up heads, then the chance

that both x and x + 2 are prime would be about"—“l——z.
(log n)
n

In other words, there would be aboutw prime pairs
to be found between 0 and . This fraction approaches in-
finity as n goes to infinity, so this would provide a quantita-
tive version of the prime pair conjecture.

For reasons involving the dependence of x + 2 being
prime on the supposition that x is already prime, one
i) (1.32032.)n

og n)* to (log n)*

should modify the estimate a
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Appended is a comparison between what has been
found and what is predicted by this simple formula. The

agreement is remarkably good, but the final Q.ED. is yet
to be written.

Interval Prime twins

g 3

T &

1188:(1)(5)8:88? 584 601
11:888:?28,’83& 461 466
10000160000 874 859
0000150000 309 276
L0000 150000 259 278
0000000 100000 221 208
100.000000 0000”191 185
1000000000 v e 166 161

Further Readings. See Bibliography
E. Grosswald; D. N, Lehmer; D, Zagier.
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