

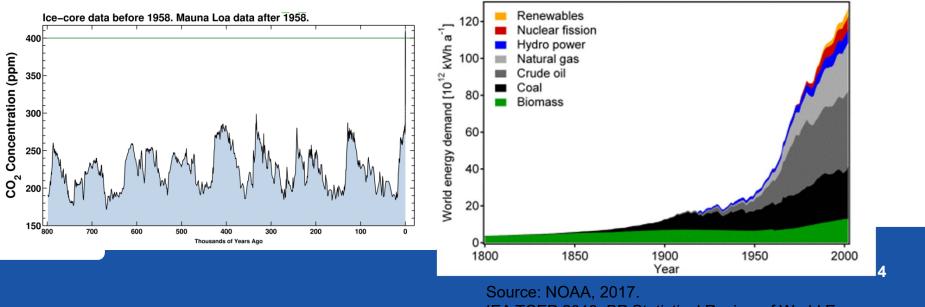
Thermal Energy Storage Latent Heat Storage Part 1

Justin Chiu, PhD Dept. of Energy Technology KTH Royal Institute of Technology, Sweden

Intended Learning Outcome

After completion of this lecture, you will be able to:

- Explain the advantages of using Thermal Energy Storage (TES)
- Calculate the amount of energy stored in a Latent Heat based TES
- Be familiar with the Packing Factor


Table of Content

- 1. Introduction
- 2. Latent Heat Thermal Energy
- 3. Stored Thermal Energy
- 4. Calculation example

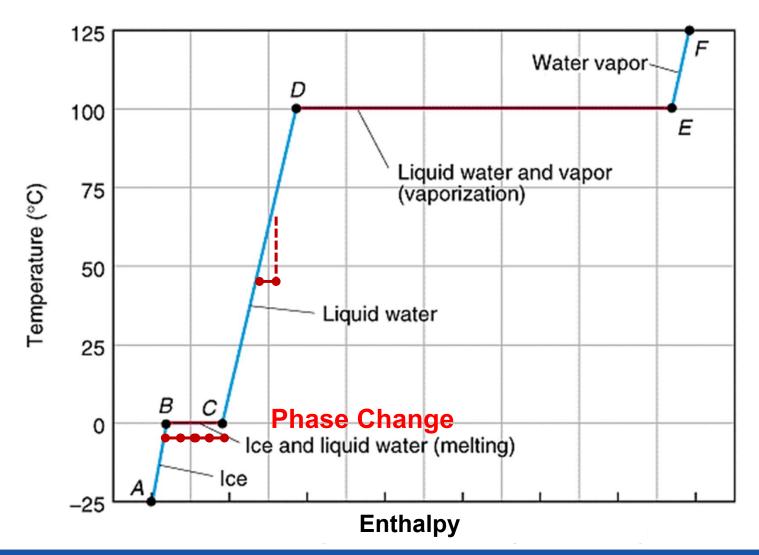
1. Introduction

- CO₂ concentration in the last 650,000 years: 200 ppm to 400 ppm.
- Business as usual: 40% CO₂ increase from 2007 to 2030.
- Heating and Cooling: 40-50% of final energy use worldwide.

IEA TCEP 2013, BP Statistical Review of World Energy

1. Introduction

Europe's first 100 % solar heated apartment building, completed in 2007, Oberburg, Switzerland.


276 square meters of solar roof

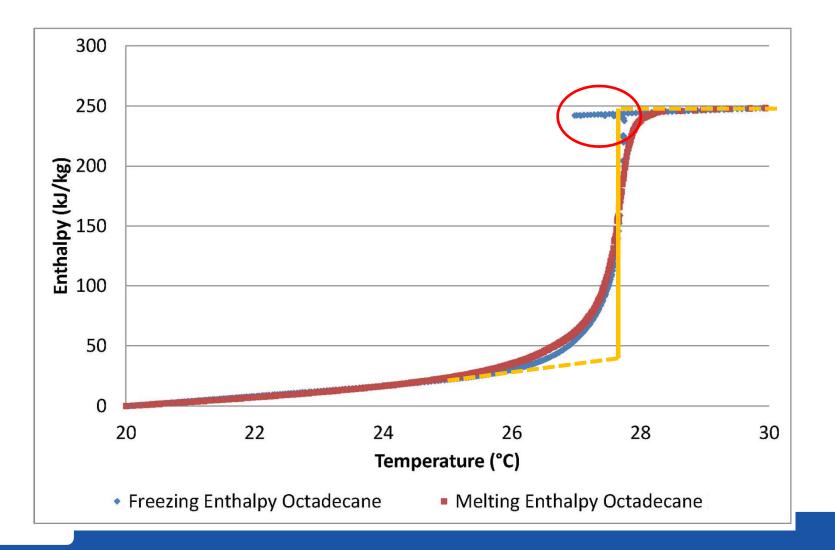
200'000 L capacity

How can we reduce the storage size?

2. Enthalpy Diagram of Water

3. Stored Thermal Energy

Amount of energy stored (Q) over temperature range $[T_1;T_2]$ with λ specific latent heat, h specific enthalpy, m mass, and c_p specific heat capacity:


$$Q_{pcm} = \int_{T_1}^{T_{PC}} \mathbf{m} \cdot \mathbf{c}_{p \, sol}(\mathbf{T}) \cdot d\mathbf{T} + \mathbf{m} \cdot \lambda + \int_{T_{PC}}^{T_2} \mathbf{m} \cdot \mathbf{c}_{p \, liq}(\mathbf{T}) \cdot d\mathbf{T}$$

In most cases, phase transition is accompanied with temperature change, hence:

$$Q_{pcm} = \int_{T_1}^{T_2} m \cdot dh_{pcm}(T) = \int_{T_1}^{T_2} m \cdot c_{ppcm}(T) \cdot dT$$

3. Experimentally Obtained Enthalpy Curve of a PCM

8

4. Volume Uptake with LHTES

T1 = 50°C; T2 = 70°C; packing factor (PF) of the PCM as 0.8

For water: q_{water} (c_p = 4.18 kJ/kg-K and ρ =1 kg/L)= 4.18* (70-50)= 83.6 kJ/kg or 83.6 kJ/L

For PCM S58 (c_p = 2.55 kJ/kg-K, λ =145 kJ/kg and ρ =1.5 kg/L): q_{PCM} = 2.55*20+145 =196 kJ/kg or 294 kJ/L

 $V_{pcm}/V_{water} = q_{water}/(q_{pcm}*PF) = 1/3$ in volume uptake

9

Further Reading and Reference

J. NW. Chiu, V. Martin, and F. Setterwall "A Review of Thermal Energy Storage Systems with Salt Hydrate Phase Change Materials for Comfort Cooling", 11th International Conference on Thermal Energy Storage, Effstock, June 14-17, 2009, Stockholm, Sweden. Available online, link is placed on the course homepage.

H. Mehling and L. F. Cabeza "Heat and cold storage with PCM: An up to date introduction into basics and applications." Springer, 2008. Available as Google ebook.

Thank You for Your Attention

Justin Chiu

justin.chiu@energy.kth.se

Thermal Energy Storage Latent Heat Storage Part 2

Justin Chiu, PhD Dept. of Energy Technology KTH Royal Institute of Technology, Sweden

Intended Learning Outcome

After completion of this lecture, you will be able to:

- Classify PCMs into relevant categories, and present some examples per category
- Describe commercial LHTES materials and their main properties
- Reflect on thermal properties of PCMs, including phase equilibrium aspects

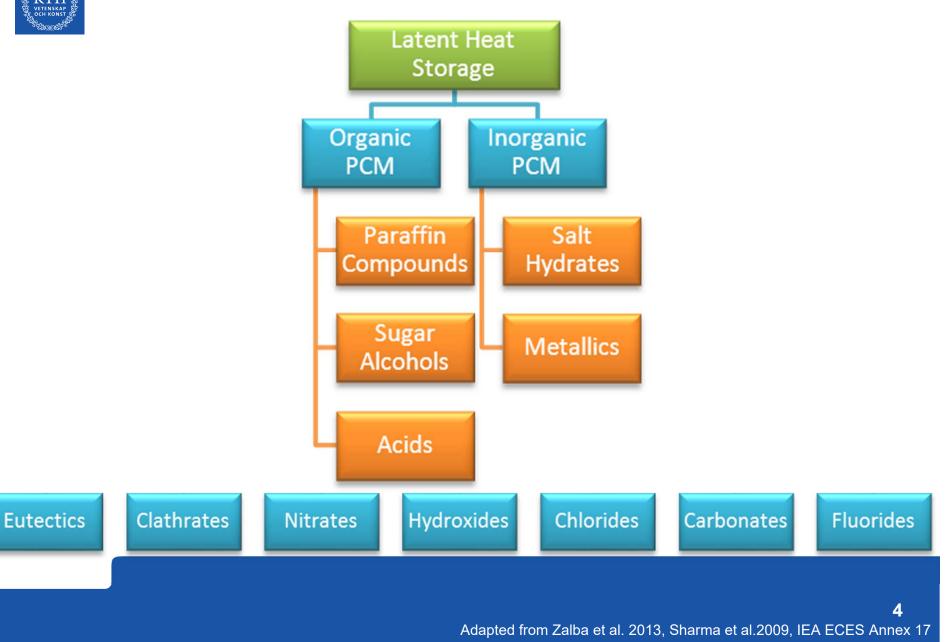
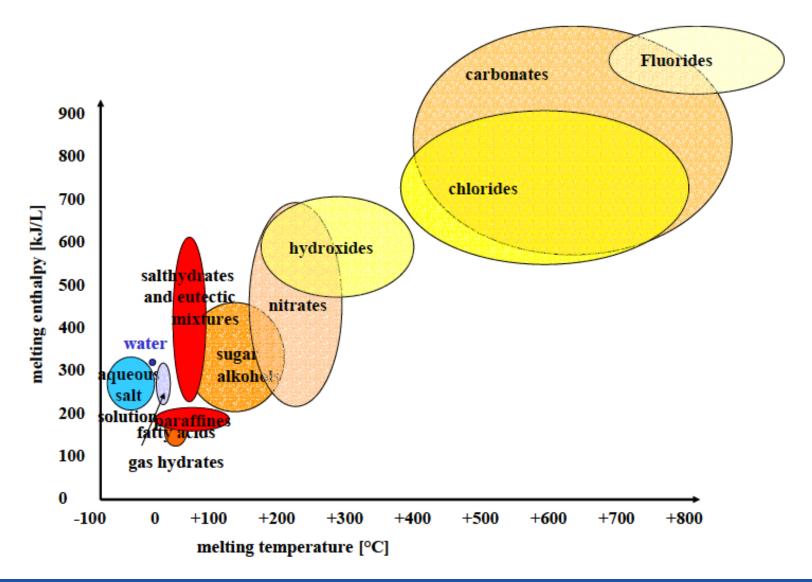


Table of Content

- 1. PCM Classification
- 2. PCM Properties
- 3. Basics of Phase Diagram



1. PCM Classifications

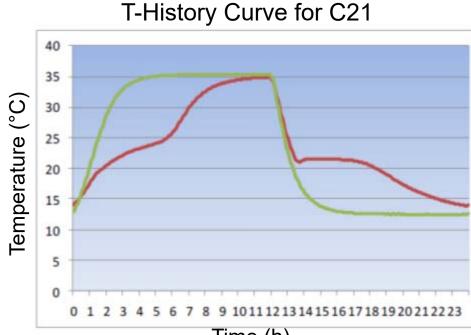
1. Storage Capacity of PCMs

1. PCM in Different Containers

Encapsulation

Foam and Matrix

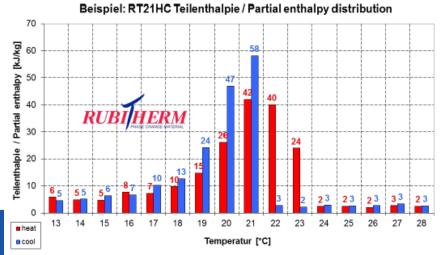
Pouches



2. Main Characteristics of Organic and Inorganic PCMs

	Organic Materials	Inorganic Materials
Advantages	 Self-nucleating Chemically inert and stable No phase segregation Available in large temperature range 	 High volumetric storage density (180-300 MJ/m³) Non flammable Low volume change
Disadvantages	 Flammable Low thermal conductivity (0.2W/m-K) Low volumetric storage density (90-200 MJ/m³) Non compatible with plastics 	 Large supercooling Low thermal conductivity (0.6W/m-K) Phase segregation Corrosion of metal containments

2. Typical Thermal Properties of Commercialized PCMs



Time (h) Physical Data for ClimSel C21

Phase Change Temperature: Maximum Temperature: Storage Capacity 15-30°C: Latent Heat of Fusion: Approx. Specific Heat in PCM: Specific Gravity: Thermal Conductivity:

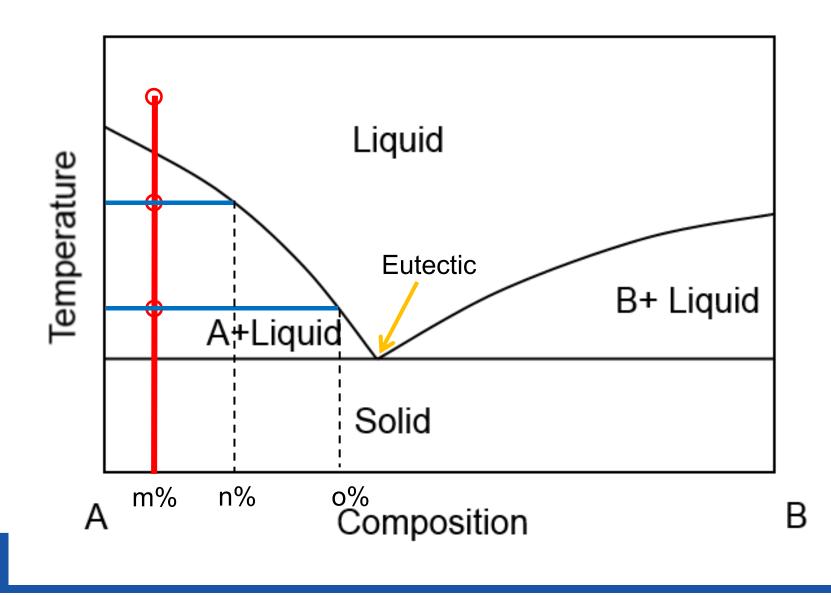
21°C
35°C
60 Wh/ Litre
43 Wh/ Litre
1Wh/kg/°C
1,38kg/Litre
0,5-0,7W/m/°C

Melting area	20-23 main peak: 21	[°C]		
Congealing area	21-19 main peak:21	[°C]		
Heat storage capacity ± 7,5%	190	[kJ/kg]*		
Combination of latent and sensible heat in a temperatur range of 13°C to 28°C.	53	[Wh/kg]*		
Specific heat capacity	2	[kJ/kg [.] K]		
Density solid at 15 °C	0,88	[kg/l]		
Density liquid at 25 °C	0,77	[kg/l]		
Heat conductivity (both phases)	0,2	[W/(m [.] K)]		
Volume expansion	14	[%]		
Flash point (PCM)	140	[°C]		
Max. operation temperature	45	[°C]		

^{*}Measured with 3-layer-calorimeter.

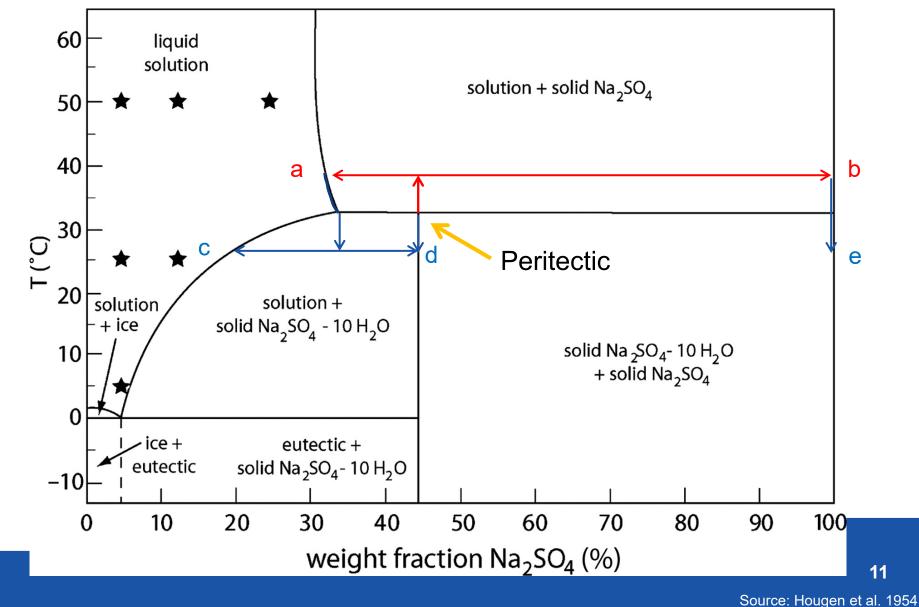
2. Typical Thermal Properties of Commercialized PCMs

PCM PlusICE PCM (EUTECTIC) (E) RANGE


PCM Phase Change Temperature		Density		Latent Heat Capacity		Volumetric Heat Capacity		Specific Heat Capacity		Thermal Conductivity		
Туре	(°C)	(°F)	(kg/m3)	(lb / ft3)	(kJ/kg)	(Btu / Ib)	(MJ/m3)	(Btu / ft3)	(kJ/kg K)	(Btu / Ib°F)	(W/m K)	(Btu / ft2hºF
EUTECTIC PCM SOLUTIONS												
E0	0	32	1,000	62.4	332	143	332	8,911	4.186	0.992	0.580	0.335
E-2	-2.0	28	1,070	66.8	306	132	327	8,777	3.80	0.900	0.580	0.335
E-3	-3.7	25	1,060	66.2	312	134	331	8,884	3.84	0.910	0.600	0.347
E-6	-6.0	21	1,110	69.3	275	118	305	8,186	3.83	0.907	0.560	0.324
E-10	-10.0	14	1,140	71.2	286	123	326	8,750	3.33	0.789	0.560	0.324
E-11	-11.6	11	1,090	68.0	301	129	328	8,804	3.55	0.841	0.570	0.329
E-12	-12.3	10	1,110	69.3	250	108	278	7,462	3.47	0.822	0.560	0.324
E-14	-14.8	5	1,220	76.2	243	105	296	7,945	3.51	0.832	0.530	0.306
E-15	-15.0	5	1,060	66.2	303	130	321	8,616	3.87	0.917	0.530	0.306
E-19	-18.7	-2	1,125	70.2	282	121	344	9,233	3.29	0.779	0.580	0.335
E-21	-20.6	-5	1,240	77.4	263	113	326	8,750	3.13	0.741	0.510	0.295
E-22	-22.0	-8	1,180	73.7	234	101	276	7,408	3.34	0.791	0.570	0.329
E-26	-26.0	-15	1,250	78.0	260	112	325	8,723	3.67	0.869	0.580	0.335
E-29	-29.0	-20	1,420	88.6	222	95	264	7,086	3.69	0.874	0.640	0.370
E-32	-32.0	-26	1,290	80.5	243	105	313	8,401	2.95	0.699	0.560	0.324
E-34	-33.6	-28	1,205	75.2	240	103	286	7,676	3.05	0.723	0.540	0.312
E-37	-36.5	-34	1,500	93.6	213	92	302	8,106	3.15	0.746	0.540	0.312
E-50	-49.8	-58	1,325	82.7	218	94	283	7,596	3.28	0.777	0.560	0.324
E-75	-75.0	-103	902	56.3	102	44	92	2,469	2.43	0.576	0.170	0.098
E-78	-78.0	-108	880	54.9	115	49	101	2,716	1.96	0.464	0.140	0.081
E-90	-90.0	-130	786	49.1	90	39	71	1,906	2.56	0.606	0.140	0.081
E-114	-114.0	-173	782	48.8	107	46	84	2,255	2.39	0.566	0.170	0.098
CM Pro	ducts has a	policy of co	ntinues prov	duct and pro	duct data i	mprovement	and reserve	s the right to	change desi	an and specif	fications wit	hout notice

PCM Products has a policy of continues product and product data improvement and reserves the right to change design and specifications without notice

2013-1



3. Binary Phase Diagram

3. Phase Diagram of Sodium Sulfate and Water

Further Reading and Reference

Paul W. Parfomak

"Chapter 11 Thermal Energy Storage in Buildings", CRS Report for Congress 2012. Available online, <u>link</u> is provided on the course homepage.

S. N. Gunasekara, V. Martin and J. NW. Chiu "Phase Diagrams as Effective Tools in Thermal Energy Storage Design Using Phase Change Materials", the 5th International Conference on Applied Energy, July 1-4, 2013, Pretoria, South Africa.

Website: Energy Conservation through Energy Storage, IEA. http://www.iea-eces.org/

Thank You for Your Attention

Justin Chiu

justin.chiu@energy.kth.se

Thermal Energy Storage Latent Heat Storage Part 3

Justin Chiu, PhD Dept. of Energy Technology KTH Royal Institute of Technology, Sweden

Intended Learning Outcome

After completion of this lecture, you will be able to:

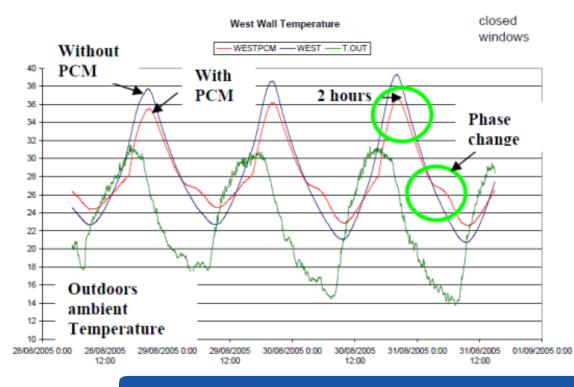
Describe some typical applications of LHTES, and relate them to existing examples and performances
Assess the cost structure of a LHTES and its economic aspects

Table of Content

Applications of LHTESEconomic Aspects

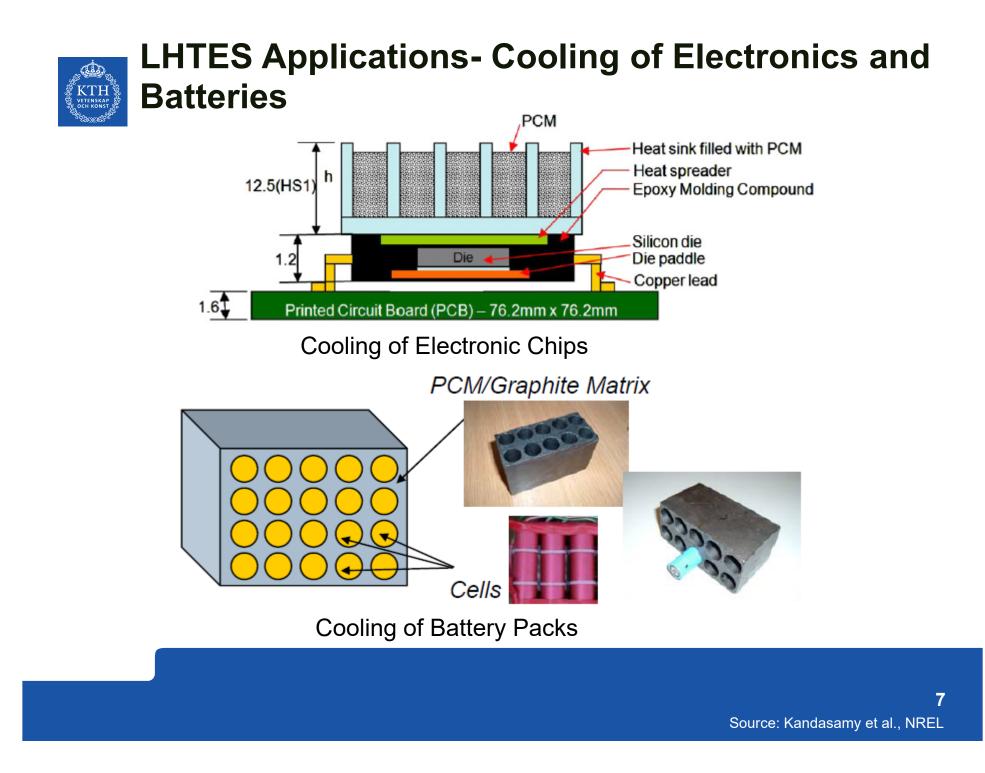
LHTES Applications- Free Cooling and Heating of Buildings

- Utilization of free cooling
 - night time cold air
 - lake/sea water
 - Underground geothermal
- Utilization of free heating
 - solar heating
 - waste heat

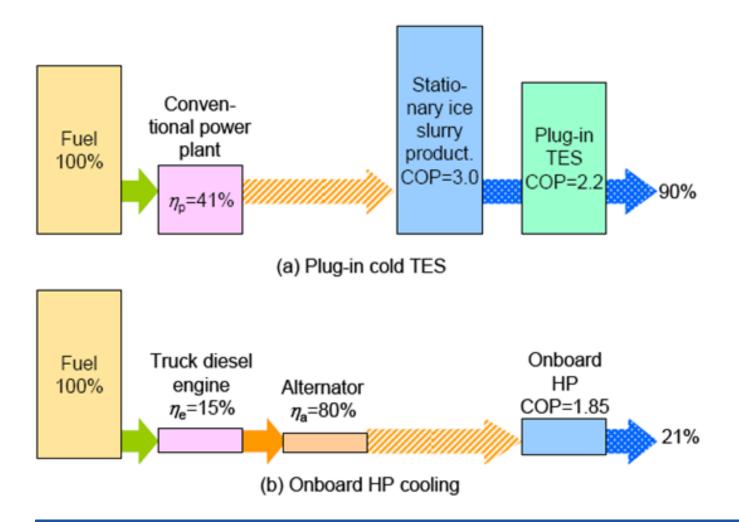

Skövde Library

Concept House

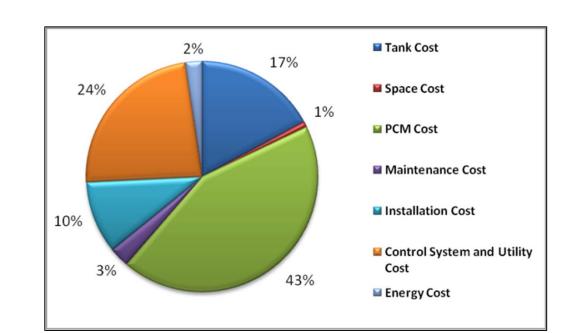
PCM in building materials → Reduction of indoor temperature fluctuation


LHTES Applications- Pharmaceutical Transportation, Body Comfort

Temperature Control in Transportation



Body Temperature Control



Total cost of a LHTES unit includes:

- Storage material
- Storage unit
- Auxiliary units
- Space
- Installation
- Maintenance
- Operation/ energy

Cost break down example of a salt hydrate based 13 kWh LHTES

- Lab-grade material: around €300/kWh
- Commercial material: around €100/kWh
- Latent heat storage capacity: 25 to 100 Wh/kg
- Inorganic PCM: density of around 1.5 kg/L
- Organic PCM: density of around 0.8 kg/L
- Estimate for storage system: \$500/kW- \$3000/kW
 In comparison: open cycle gas turbine \$600/kW;
 IGCC with carbon sequestration: \$6000/kW

Bo Nordel

"The Sundsvall snowstorage- six years of operation". Chapter 21, Thermal Energy Storage for Sustainable Energy Consumption. Springer 2007. Available as Google ebook.

Thank You for Your Attention

Justin Chiu justin.chiu@energy.kth.se

Thermal Energy Storage Latent Heat Storage Part 4

Justin Chiu, PhD Dept. of Energy Technology KTH Royal Institute of Technology, Sweden

After completion of this lecture, you will be able to

Analyze deployment challenges of LHTES
Plan future research and development activities

Deployment Challenges

- Material
- Component
- System
- Social and Environmental

Future Research Focus

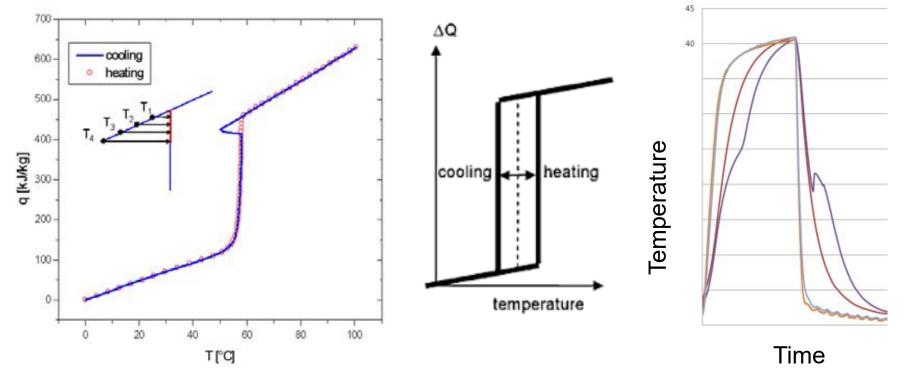
Technical Challenges

Material:

	Organic Materials		Inorganic Materials
•	Flammable	•	Large subcooling
•	Low thermal conductivity	•	Low thermal conductivity
	(0.2 W/m-K)		(0.6 W/m-K)
•	Low volumetric storage	•	Phase segregation
	density (90-200 MJ/m ³)	•	Corrosion of metals
•	Non compatible with		
	plastics		

Component:

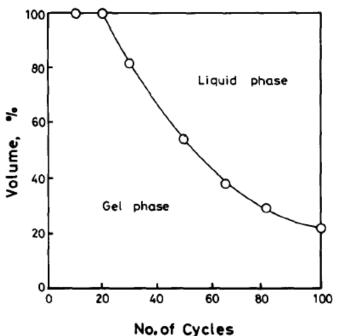
Thermal energy extraction/storage rate.


System:

Control strategy.

Cost effective LHTES integration and utilization.

Subcooling and hysteresis delay phase change



Consequences in charge/discharge.

Phase separation lowers the amount of functional PCM.

- Gelling agents: bentonite, starch, cellulose, super absorbent copolymer, carboxymethyl cellulose, and others.
- \geq 20%~35% latent enthalpy drop.
- Artificial mixing heat storage system *
 Demonstrip of a stright closed
- Parasitic electricity load

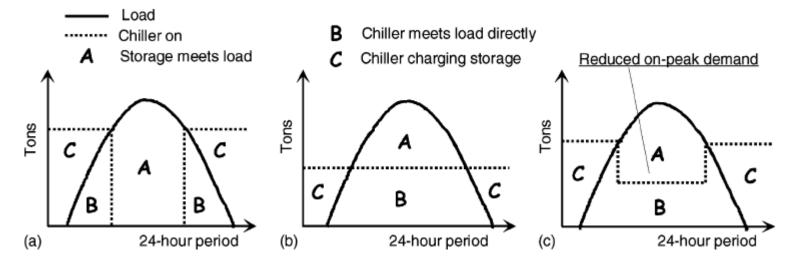
Material- Power Rate Enhancement

- Heat exchanger surface extension
 - Fins
 - Encapsulations
 - Metallic structures
 - ≻ 40-70W/m²K

- Thermal conductivity improvement
 - Metallic particles
 - Foams and matrices impregnation
 - ➢ up to 800W/m²K

Impact of power enhancement on energy storage performance

Component Design


■Packing Factor (PF) \rightarrow storage density

- Heat Exchanger Design
 - \rightarrow solidification/melting time
 - \rightarrow power
 - \rightarrow storage capacity

Storage density is a tradeoff to solidification/melting time and storable/extractable power.

Fin and Tube Spacing							$\overline{}$							ſ	
(mm)	10	20	30	40	50	60	70	80	90	100	110	120	130		140
PF	59%	78%	86%	90%	93%	94%	95%	96%	96%	97%	97%	98%	98%		98%
Solidification Time (hr)	0.18	0.71	1.6	3.1	4.8	6.4	8.7	11	14	18	21	25	30		35

Operating strategies. (a) full-storage; (b) partial-storage load-leveling and (c) partial-storage demand-limiting.

Social awareness/ Public acceptance

Landlord-Tenant/ Supplier-User dilemma

Involvement of Decision Makers

Long Standing Demonstration Unit

Future Research Focus

Material:

More stable and cost effective PCMs

Component:

Power matching storage units

Robust storage systems

System:

Concept validation and demonstration

Techno- economic optimization of system integration

Social and Environmental Study

 Justin Ning-Wei Chiu, Viktoria Martin, and Fredrik Setterwall

"System Integration of Latent Heat Thermal Energy Storage for Comfort Cooling Integrated in District Cooling Network.", 11th International Conference on Thermal Energy Storage, Effstock, June 14-17, 2009, Stockholm, Sweden. Link available on course homepage.

Thank You for Your Attention

Justin Chiu justin.chiu@energy.kth.se

