Visualization, DD2257
Prof. Dr. Tino Weinkauf

Derived Quantities

scalar field

$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$

$$
s(\mathbf{x})
$$

with $\mathbf{x} \in \mathbb{E}^{n}$
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$\underset{\text { with } \mathbf{x} \in \mathbb{E}^{n}}{\mathbf{v}(\mathbf{x})=\left(\begin{array}{c}c_{1}(\mathbf{x}) \\ \vdots \\ c_{m}(\mathbf{x})\end{array}\right)}$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\ \vdots & & \vdots \\ c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})\end{array}\right)$

scalar field

$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$

The first derivative of a scalar field is a vector field called gradient. It consists of the partial derivatives of the scalar function $s(\mathbf{x})$ for each dimension of the observation space.
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\mathbf{v}(\mathbf{x})=\left(\begin{array}{c}
c_{1}(\mathbf{x}) \\
\vdots \\
c_{m}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$$
\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}
c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\
\vdots & & \vdots \\
c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
s(x, y) \cdots \cdots, \cdots s(x, y)=\binom{\frac{\partial s}{\partial x}}{\frac{\partial s}{\partial y}}=\binom{s_{x}}{s_{y}}
$$

2D scalar field
scalar field
$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$
$s(\mathbf{x})$
with $\mathbf{x} \in \mathbb{E}^{n}$
$s(x, y)$
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\left(c_{1}(\mathbf{x})\right)
$$

The second derivative of a scalar field is a tensor field called Hessian. It consists of the partial derivatives of $s(\mathbf{x})$ derived twice for each dimension of the observation space.

$$
\nabla s(x, y)=\binom{\frac{\partial s}{\partial x}}{\frac{\partial s}{\partial y}}=\binom{s_{x}}{s_{y}}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$$
\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}
c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\
\vdots & & \vdots \\
c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
\nabla^{2} s(x, y)=\left(\begin{array}{ll}
s_{x x} & s_{x y} \\
s_{y x} & s_{y y}
\end{array}\right)
$$

Hessian
scalar field
$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$

$$
s(\mathbf{x})
$$

with $\mathbf{x} \in \mathbb{E}^{n}$
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\left(c_{1}(\mathbf{x})\right\rangle
$$

The first derivative of a vector field is a tensor field called Jacobian. It consists of the partial derivatives of $\mathbf{v}(\mathbf{x})$ for each dimension of the observation space.

$$
\mathbf{v}(x, y)=\binom{u(x, y)}{v(x, y)}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}c_{11}(\mathbf{x}) & \cdots & c_{1 b}(\mathbf{x}) \\ \vdots & & \vdots \\ c_{m 1}(\mathbf{x}) & \cdots & c_{m b}(\mathbf{x})\end{array}\right)$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
\begin{array}{ll}
\nabla \mathbf{v}(x, y)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)
\end{array}
$$

$s(x, y)$

2D scalar field
$s(x, y, z)$

3D scalar field
$\mathbf{v}(x, y)=\binom{u}{v}$
2D vector field
Gradient of a 2D scalar field
$\mathbf{v}(x, y, z)=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$
3D vector field
Gradient of a 3D scalar field
$\mathbf{J}(x, y)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)$
Jacobian of a 2D vector field Hessian of a 2D scalar field
$\mathbf{J}(x, y, z)=\left(\begin{array}{ccc}u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z}\end{array}\right)$
Jacobian of a 3D vector field
Hessian of a 3D scalar field

- Divergence of v :

- scalar field
- observe transport of a small ball around a point
- expanding volume \rightarrow positive divergence
- contracting volume \rightarrow negative divergence
- constant volume $\boldsymbol{\rightarrow}$ zero divergence

$$
\operatorname{div} \mathbf{v}=\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}+\frac{\delta w}{\delta z}=u_{x}+v_{y}+w_{z}
$$

$\operatorname{div} \mathbf{v} \equiv 0 \Leftrightarrow \mathbf{v}$ is incompressible

- Laplacian of a scalar field:
- Scalar field
- Divergence of the gradient of the scalar field

$$
\begin{aligned}
L f & =\operatorname{div} \operatorname{grad} f=\operatorname{div}\left(\begin{array}{l}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right) \\
& =\frac{\delta^{2} f}{\delta x^{2}}+\frac{\delta^{2} f}{\delta y^{2}}+\frac{\delta^{2} f}{\delta z^{2}}=f_{x x}+f_{y y}+f_{z z}
\end{aligned}
$$

- Interpretation of Laplacian:
- Measure of the difference between the average value of f in the immediate neighborhood of the point and the precise value of the field at the point.
- Properties of the Laplacian of a scalar field:
- Linvariant under rotation and translation of the underlying coordinate system
- $L f \equiv \mathbf{0} \Leftrightarrow f$ is harmonic function
- Curl of v :
- vector field
- also called rotation (rot) or vorticity
- indication of how the field swirls at a point

$$
\operatorname{curl} \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\
u & v & w
\end{array}\right|=\left(\begin{array}{c}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Curl of v :
- paddle wheel model:
- insert paddle wheel in a flow
- orient such that its rate of rotation is maximal
- \rightarrow curl v is parallel to main rotation axis
- \rightarrow |curl $\mathrm{v} \mid$ is corresponds to rate of rotation
- golf ball model

- consider golf ball in v
- is transported and rotates
- \rightarrow curl v is parallel to main rotation axis
- \rightarrow |curl $\mathrm{v} \mid$ is corresponds to rate of rotation
- Properties of curl:
- curl $\mathbf{v} \equiv \mathbf{0} \Leftrightarrow \mathbf{v}$ is irrotational or curl-free
- $\mathbf{v}=\operatorname{grad} f \Leftrightarrow \mathbf{v}$ is conservative
- Conservative is subclass of curl-free, since curl grad $f \equiv \mathbf{0}$ for any scalar field f
- The Nabla operator:
- also called "Del"-operator
- abbreviation: ∇
- symbolically written as:

$$
\nabla=\mathbf{i} \frac{\delta}{\delta x}+\mathbf{j} \frac{\delta}{\delta y}+\mathbf{k} \frac{\delta}{\delta z}=\left(\begin{array}{c}
\frac{\delta}{\delta x} \\
\frac{\delta}{\delta y} \\
\frac{\delta}{\delta z}
\end{array}\right)
$$

- The Nabla operator:
- Allows us to write the other operators as:

$$
\begin{aligned}
\operatorname{grad} f & =\nabla f \\
\operatorname{div} \mathbf{v} & =\nabla \cdot \mathbf{v} \\
\operatorname{curl} \mathbf{v} & =\nabla \times \mathbf{v} \\
L f & =\operatorname{div}(\operatorname{grad} f)=\nabla \cdot(\nabla f)=\nabla^{2} f \\
\mathbf{J}_{\mathbf{v}} & =\nabla \mathbf{v}
\end{aligned}
$$

- Scalar and vector identities:

$$
\begin{aligned}
& \nabla(f+g)=\nabla f+\nabla g \\
& \nabla(c f)=c \nabla f \quad \text { for a constant } c \\
& \nabla(f g)=f \nabla g+g \nabla f \\
& \nabla(f / g)=(g \nabla f-f \nabla g) / g^{2} \quad \text { at points } \mathbf{x} \text { where } \quad g(\mathbf{x}) \neq 0 \\
& \operatorname{div}(\mathbf{v}+\mathbf{w})=\operatorname{div} \mathbf{v}+\operatorname{div} \mathbf{w} \\
& \operatorname{curl}(\mathbf{v}+\mathbf{w})=\operatorname{curl} \mathbf{v}+\operatorname{curl} \mathbf{w} \\
& \operatorname{div}(f \mathbf{v})=f \operatorname{div} \mathbf{v}+\mathbf{v} \cdot \nabla f \\
& \operatorname{div}(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot \operatorname{curl} \mathbf{v}-\mathbf{v} \cdot \operatorname{curl} \mathbf{w}
\end{aligned}
$$

- Scalar and vector identities (cont'd):

$$
\begin{aligned}
& \operatorname{div} \operatorname{curl} \mathbf{v}=0 \\
& \operatorname{curl}(f \mathbf{v})=f \operatorname{curl} \mathbf{v}+\nabla f \times \mathbf{v} \\
& \operatorname{curl} \nabla f=\mathbf{0} \\
& \nabla^{2}(f g)=f \nabla^{2} g+g \nabla^{2} f+2(\nabla f \cdot \nabla g) \\
& \operatorname{div}(\nabla f \times \nabla g)=0 \\
& \operatorname{div}(f \nabla g-g \nabla f)=f \nabla^{2} g-g \nabla^{2} f
\end{aligned}
$$

- Decomposition of Jacobian Matrix:
- $\mathbf{J}_{\mathbf{v}}$ can be decomposed into symmetric and antisymmetric part:

$$
\begin{aligned}
& \mathbf{J}_{\mathbf{v}}=\mathbf{S}+\boldsymbol{\Omega} \quad \text { with } \\
& \mathbf{S}=\frac{1}{2}\left(\mathbf{J}_{\mathbf{v}}+\mathbf{J}_{\mathbf{v}}{ }^{\mathrm{T}}\right) \text { symmetric part (shear contribution) }
\end{aligned}
$$

$$
\boldsymbol{\Omega}=\frac{1}{2}\left(\mathbf{J}_{\mathbf{v}}-\mathbf{J}_{\mathbf{v}}{ }^{\mathrm{T}}\right)=\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \begin{aligned}
& \text { antisymmetric part } \\
& \text { (rotational contribution) }
\end{aligned}
$$

$$
\left(\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)=\mathbf{c u r l} \mathbf{v}=\left(\begin{array}{l}
w_{y}-v_{z} \\
u_{z}-w_{x} \\
v_{x}-u_{y}
\end{array}\right)
$$

- Vortex-Strain duality:
- Ω dominates S : high vortical activity
- S dominates Ω : high strain

$$
\begin{aligned}
& \mathbf{J}_{\mathbf{v}}=\mathbf{S}+\boldsymbol{\Omega} \\
& \mathbf{S}=\frac{1}{2}\left(\mathbf{J}_{\mathbf{v}}+\mathbf{J}_{\mathbf{v}}^{\mathrm{T}}\right) \\
& \boldsymbol{\Omega}=\frac{1}{2}\left(\mathbf{J}_{\mathbf{v}}-\mathbf{J}_{\mathbf{v}}{ }^{\mathrm{T}}\right)=\left(\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right)
\end{aligned}
$$

- Q-criterion, or, Okubo-Weiss parameter:

- $Q>0$: vortex region, since vorticity magnitude dominates the rate of strain
- $Q<0$: region of high stretching, since rate of strain dominates vorticity magnitude
- Captures vortex-strain duality

$$
Q=\frac{1}{2}\left(\|\Omega\|^{2}-\|\mathbf{S}\|^{2}\right)=\|\omega\|^{2}-\frac{1}{2}\|\mathbf{S}\|^{2}
$$

- λ_{2} criterion:

- Second largest eigenvalue of the symmetric tensor $\mathrm{S}^{2}+\Omega^{2}$
- Vortices can be found where $\lambda_{2}<0$
- $\lambda_{2}>0$ lacks physical interpretation
- Does not capture stretching and folding of fluid particles, i.e., does not describe the vortexstrain duality

Summary

- Derived quantities for scalar and vector fields
- many more
- Based on derivatives
- Divergence
- Laplacian
- Curl
- Vortex-Strain duality
- vortex regions in flow fields

