KTH Stockholm CSC :: CST
Visualization, Autumn 2018
DD2257
Tino Weinkauf, Wiebke Köpp, Anke Friederici

Test Exam
Test Exam

General Instructions: Please read the following carefully before proceeding to solve the tasks!

- You have 2 h time to finish the exam.
- You are allowed to use 4 pages (2 double-sided sheets, or 4 one-sided sheets) of hand-written notes.
- You are allowed to use a non-programmable calculator.
- Please answer the questions in English.
- All tasks specify how detailed the answer should be (written in italics).
- Do not write on the question sheets.
- Return the question sheets together with your answers.
- The exam consists of 7 tasks.
- You can obtain 100 points. If you obtain at least 50 points you will pass the exam.

All the best!

Note: This is a text exam!

- The questions are from previous exams.
- The amount of expected work will be similar in the real exam.
- There are too many topics in this course to cover all of them in one exam. Therefore, any exam covers a selection of topics. The selection shown in this test exam may not coincide with the real exam.

The following scatter plot shows the income of the employees of two companies. Criticize this visualization! List three issues where this visualization violates good practices. (3 short sentences.)

Task 2: Cell Lookup in a Uniform Grid

$4+4+4+4$ Points
Consider the following uniform grid:

$$
\mathbf{b}_{\min }=\left(\begin{array}{c}
-3 \\
6 \\
0
\end{array}\right) \quad \mathbf{b}_{\max }=\left(\begin{array}{c}
24 \\
24 \\
9
\end{array}\right) \quad n_{x}=10, n_{y}=10, n_{z}=10
$$

where the points $\mathbf{b}_{\text {min }}$ and $\mathbf{b}_{\text {max }}$ span the bounding box and n_{x}, n_{y}, n_{z} are the number of grid vertices in each dimension. As usual, the grid vertices are denoted using an index triplet (i, j, k) with $0 \leq i<n_{x}, 0 \leq j<n_{y}$, $0 \leq k<n_{z}$.

Determine the grid vertices required for trilinear interpolation at the following coordinates! (It suffices to write down the index triplets.)
(a) $\mathbf{p}_{a}=\left(\begin{array}{c}-1 \\ 11 \\ 4.5\end{array}\right)$
(b) $\mathbf{p}_{b}=\left(\begin{array}{c}11 \\ 9 \\ 9\end{array}\right)$
(c) $\mathbf{p}_{c}=\left(\begin{array}{l}6 \\ 8 \\ 6\end{array}\right)$
(d) $\mathbf{p}_{d}=\left(\begin{array}{c}-1 \\ 7 \\ 10\end{array}\right)$

Task 3: Curvilinear Grid between two Circles

Consider two circles A and B in 2D with a radius of r and a distance between their centers of d. Assume that the circle A is centered at the origin and that circle B is centered at $(0, d)$. Let us denote the left-most and right-most points of the circles with a_{ℓ}, a_{r} and b_{ℓ}, b_{r}. See Figure 1 for the setup.

Create a curvilinear grid between these circles with a_{ℓ}, a_{r} and b_{ℓ}, b_{r} as the corner vertices! Describe the curvilinear grid using coordinate functions for the grid vertices such as $x(i, j)$ and $y(i, j)$, where i, j are the indices of the vertices! (It suffices to just write down the formulas, but a derivation (Härledning) is appreciated.)
(Hint: The coordinates of points p on a circle with radius r can be described as

$$
\mathrm{p}(\alpha)=\binom{r \cos (\alpha)}{r \sin (\alpha)}
$$

Figure 1: Two circles A and B with radius r and a distance between their centers of d. The points a_{ℓ}, a_{r} and b_{ℓ}, b_{r} are the corners of the curvilinear grid.
with $\alpha \in[0,2 \pi)$ being the angle on the circle.)

Task 4: Bilinear Interpolation in the Unit Square
$2+8+2 \mathrm{P}$
Given is the bilinear function $f(x, y)$ with $f(0,0)=3, f(1,0)=2, f(0,1)=2, f(1,1)=3$ as shown in Figure 2 .
(a) Compute $f(0.5,0.5)$.
(b) Determine the formula for the gradient of the given f.
(c) Compute the gradient at $(0.5,0.5)$.

Figure 2: A bilinear cell of a 2D scalar field.

Consider the 2D vector field $\mathbf{v}(x, y)=(1,0)^{T}$ and a 2 D texture with the dimensions 256×256. How many stream lines need to be computed to convolve the texture when using:
(a) the classic LIC algorithm. (one number)
(b) the FastLIC algorithm. (one number)

Task 6: Stream Lines and Path Lines

8+8 Points
Consider the vector field

$$
\mathbf{v}(x, y, t)=\binom{\cos (t)}{\sin (t)} .
$$

Sketch the stream lines and the path lines of \mathbf{v}. Indicate any assumptions that you make!
(A rough sketch in 2D suffices. Do not draw in 3D or space-time! If you choose a parameter, or fix some other value, make sure to indicate your choice.)

Task 7: Critical Points in Gradient Vector Fields

Consider the vector field $\mathbf{v}(x, y)$ which is the gradient of a scalar field, i.e., $\mathbf{v}(x, y)=\nabla s(x, y)$. It is known that not all types of critical points can appear in a gradient vector field.
(a) Which types of critical points can appear in a gradient vector field $\mathbf{v}(x, y)$? (List of critical point types.)
(b) Proof your statement from (a)! (A proper proof or argumentation is required.)

