

Visualization, DD2257 Prof. Dr. Tino Weinkauf

Introduction

Requests on a Visualization How (Not!) to lie with visualizations

The visualization of a data set should be:

following Heidrun Schumann, University of Rostock

Expressiveness

A visualization is expressive, if (only) the information is represented which is in the data.

Could also be described using the terms "Effectiveness" and "effective".

expressive visualization

A visualization is efficient, if it can be read with minimal effort.

task aspects tailored to the task

psychological aspects familiarity, intuitiveness

supports spontaneous perception

inefficient visualization

for task "find fuel-efficient car within budget"

A visualization is efficient, if it can be read with minimal effort.

task aspects tailored to the task

psychological aspects familiarity, intuitiveness

supports spontaneous perception

efficient visualization

for task "find fuel-efficient car within budget"

A visualization is efficient, if it can be read with minimal effort.

task aspects tailored to the task

psychological aspects familiarity, intuitiveness

supports spontaneous perception

(potentially) inefficient visualization due to repeating and unintuitive colors

A visualization is efficient, if it can be read with minimal effort.

task aspects tailored to the task

psychological aspects familiarity, intuitiveness

supports spontaneous perception

Appropriateness

A visualization is appropriate, if the amount of visual content is in line with the amount of data.

Consider the cost – benefit ratio of creating versus reading the visualization.

inappropriate visualization

Visualization, DD2257 Prof. Dr. Tino Weinkauf

Introduction

How (Not!) to lie with visualization

- Edward Rolf Tufte
- born 1942
- Professor emeritus of political science, statistics, and computer science at Yale University
- authored and self-published many award-winning books on data visualization design
 - The Visual Display of Quantitative Information
 - Envisioning Information
 - Visual Explanations

Edward Tufte presenting in Dallas, Texas, May 2015. Photo by Keegan Peterzell, <u>Wikimedia Commons</u>, CC BY-SA 4.0.

One of Tufte's Rules:

Visual attribute value should be directly proportional to data attribute value

Figure 13. Changing scale in mid-axis to make exponential growth linear (© The Washington Post).

?

Height or Area

Height = value
Width = value
Area = value²

or

Problem: Using 2 visual dimensions to represent 1 data dimension.

 Area = value height*width = value height = width = value ^{0.5}

Time, April 9, 1979, p. 57.

Height? Diameter? Surface area? Volume?

73 – 79 data difference = 5.5x 73 – 79 volume difference = 270x

THE SHRINKING FAMILY DOCTOR In California

Percentage of Doctors Devoted Solely to Family Practice

- Show entire scale
- Show data in context
- Consistent, linear scale
 - Log scale for log data
- Up vs. down: indicate direction of improvement
- Avoid size encoding
 - Use height OR width
 - Don't use both for same data attribute
 - Avoid area, volume encoding

For more, see http://wtfviz.net/