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analytic formulae

function in 1D:

𝑓 𝑥 = 𝑥3

function in 2D:

𝑓 𝑥, 𝑦 = 𝑥2 + 𝑥𝑦

function in 3D:

𝑓 𝑥, 𝑦, 𝑧 = 3𝑥 +
𝑥𝑦

𝑧 + 1

Fields



analytic formulae

function in 1D:

𝑓 𝑥 = 𝑥3

function in 2D:

𝑓 𝑥, 𝑦 = 𝑥2 + 𝑥𝑦

function in 3D:

𝑓 𝑥, 𝑦, 𝑧 = 3𝑥 +
𝑥𝑦

𝑧 + 1

Fields

𝑓 𝐱 = ⋯
𝐱 ∈ 𝐸𝑛

observation space can be 2D, 3D, …

easier to describe with a single, bold 𝐱



Fields

scalar field vector field tensor field

2D vector field 2D tensor field

𝐓 𝑥, 𝑦 =
𝑎(𝑥, 𝑦) 𝑏(𝑥, 𝑦)
𝑐(𝑥, 𝑦) 𝑑(𝑥, 𝑦)

𝑠 𝑥, 𝑦 = 2𝑥𝑦 + 4𝑦2

2D scalar field

𝐯 𝑥, 𝑦 =
𝑢(𝑥, 𝑦)
𝑣(𝑥, 𝑦)



Fields

scalar field vector field tensor field

2D vector field 2D tensor field

𝐓 𝑥, 𝑦 =
2𝑥 1

𝑥 + 𝑦 −𝑦
𝑠 𝑥, 𝑦 = 2𝑥𝑦 + 4𝑦2

2D scalar field

𝐯 𝑥, 𝑦 =
2𝑥 − 𝑦
2𝑦



Derivatives

many applications

normal for volume rendering

critical point classification for vector 

field topology

In scalar fields: describes 

direction of steepest ascend

Derivatives



Derivatives

scalar field vector field tensor field

∇𝑠 𝑥, 𝑦 =

𝜕𝑠
𝜕𝑥
𝜕𝑠
𝜕𝑦

=
𝑠𝑥
𝑠𝑦

The first derivative of a scalar field 

is a vector field called gradient.

It consists of the partial derivatives 

of the scalar function 𝑠(𝐱) for each 

dimension of the observation space.

gradient

𝑠 𝑥, 𝑦

2D scalar field



Derivatives

scalar field vector field tensor field

∇𝑠 𝑥, 𝑦 =

𝜕𝑠
𝜕𝑥
𝜕𝑠
𝜕𝑦

=
𝑠𝑥
𝑠𝑦

The second derivative of a scalar 

field is a tensor field called Hessian.

It consists of the partial derivatives 

of 𝑠(𝐱) derived twice for each 

dimension of the observation space.

gradient

∇2𝑠 𝑥, 𝑦 =
𝑠𝑥𝑥 𝑠𝑥𝑦
𝑠𝑦𝑥 𝑠𝑦𝑦

Hessian

𝑠 𝑥, 𝑦

2D scalar field



Derivatives

scalar field vector field tensor field

The first derivative of a vector field 

is a tensor field called Jacobian.

It consists of the partial derivatives 

of 𝐯(𝐱) for each dimension of the 

observation space.

2D vector field

∇𝐯 𝑥, 𝑦 =
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦

Jacobian

𝐯 𝑥, 𝑦 =
𝑢(𝑥, 𝑦)
𝑣(𝑥, 𝑦)



Fields

analytic 
formulae

interpolation 
of data in 
grid / 
meshes

gridless 
interpolation

Continuous Data

continuous representation of a variable

sampled data:

interpolation formulae used to create 

a continuous representation

Fields



Interpolation

● A grid consists of a finite 

number of samples

● The continuous signal is 

known only at a few points 

(data points)

● In general, data is needed in 

between these points

● By interpolation we obtain 

a representation that 

matches the values at the 

data points

● Reconstruction at any other 

point possible

what is the 
value here?

interpolation

reconstructs a 

continuous function



Interpolation

● Simplest  approach: Nearest-Neighbor Interpolation

● Assign the value of the nearest grid point to the sample.



Interpolation

● Linear Interpolation (in 1D domain)

● Domain points    , scalar function 

General:

Special Case:

Basis Coefficients



Interpolation

● Linear Interpolation (in 1D domain)

● Sample values 

● 𝐶0 Continuity (discontinuous first derivative)

● Use higher order interpolation for smoother transition,

e.g., cubic interpolation



Interpolation

● Cubic Hermite Interpolation (in equidistant 1D domain)

●

Linear

Cubic

Linear

Cubic

(Catmull Rom)

“interpolate values 

and derivatives at

and     “

Continuity 

(discontinuous 

second derivatives)



Interpolation

● Interpolation in 2D, 3D, 4D, …

● Tensor Product Interpolation

● Perform linear / cubic … interpolation in each x,y,z … direction separately

Bi-Linear Bi-Cubic



Interpolation

● Tensor Product Interpolation

● Extend interpolation from 1D to higher dimensions

● Coefficients     ,  associated basis functions           (linear / cubic / …) 

1D

2D, “bi-”

3D, “tri-”



Interpolation

● Example: Linear Tensor Product Interpolation

● Number of basis functions / coefficients

1D, linear



Interpolation

● Example: Linear Tensor Product Interpolation

● Number of basis functions / coefficients

2D, “bi-linear”

“interpolate twice in x direction 

and then once in y direction”

very important



Grids and Interpolation

● Example: Bi-linear interpolation in a 2D cell

● Repeated linear interpolation



Interpolation

● Example: Linear Tensor Product Interpolation

● Number of basis functions / coefficients

3D, “tri-linear”

“interpolate four times in x 

direction, twice in y direction, and 

once in z direction”



f(x,y,z) =

(1-x)*(1-y)*(1-z)* f
000

+ x *(1-y)*(1-z)* f
100

+ (1-x)* y *(1-z)* f
010

+ x * y *(1-z)* f
110

+ (1-x)*(1-y)* z * f
001

+ x *(1-y)* z * f
101

+ (1-x)* y * z * f
011

+ x * y * z * f
111

f(x,y) =

(1-x)*(1-y)* f
00

+ x *(1-y)* f
10

+ (1-x)* y * f
01

+ x * y * f
11

f(x) =

(1-x)* f
0

+ x * f
1

1D linear

2D bi-linear

3D tri-linear



Function Derivatives

Two ways to estimate 

gradients:

● Direct derivation of 

interpolation formula

● Finite differences schemes

∇𝑠 𝑥, 𝑦 =

𝜕𝑠
𝜕𝑥
𝜕𝑠
𝜕𝑦

=
𝑠𝑥
𝑠𝑦

∇𝐯 𝑥, 𝑦 =
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦

Jacobian of a 2D vector field

Gradient of a 2D scalar field



Field Function Derivatives

● Field Function Derivatives, Bi-Linear

“constant in x 

direction“

“constant in y 

direction“

derive this 

interpolation formula

𝛻𝑓 𝑥, 𝑦 =

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

final gradient



Field Function Derivatives

● Problem of exact linear function differentiation: discontinuous gradients

● Solution:

● Use higher order interpolation scheme (cubic)

● Use finite difference estimation

(Piecewise) linear function Gradient



Finite Differences

● Finite Differences Schemes

● Apply Taylor series expansion around samples

Linear

function

Continuous 

function

Forward 

difference

Backward

difference

Taylor expansion



Finite Differences

● Finite Differences Schemes

● Central differences have higher approximation order than forward / backward 

differences 

Difference

Central 

difference



Finite Differences

● 1D Example, linear interpolation

(Piecewise) linear function Central 

differences



Finite Differences

● Finite Differences Schemes, Higher order derivatives



Interpolation in Triangles

● Piecewise Linear Interpolation in Triangle Meshes



Interpolation in Triangles

● Linear Interpolation in a Triangle

● There is exactly one linear function that 

satisfies the interpolation constraint

● A linear function can be written as 

● Polynomial can be obtained by

solving the linear system

● Linear in 𝑥 and 𝑦

● Interpolated values along any ray in the plane spanned by the triangle are linear 

along that ray



Barycentric Coordinates

● Barycentric Coordinates:

● Planar case:

Barycentric combinations of 3 points

● Area formulation:
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Barycentric Interpolation

The linear function of a triangle can be 

computed at any point as

𝑓 𝑥, 𝑦 = 𝛼 𝑥, 𝑦 𝑓0 + 𝛽 𝑥, 𝑦 𝑓1 + 𝛾 𝑥, 𝑦 𝑓2

with 𝛼 + 𝛽 + 𝛾 = 1 as barycentric coordinates.

To be inside triangle: 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1

Barycentric Interpolation in a Triangle

very important



Barycentric Interpolation

● Background on Barycentric Interpolation in a Triangle

● The linear function of a triangle can be computed at any point as

with                                  (Barycentric Coordinates)

● This also holds for the coordinate           of the triangle:

→ Can be used to solve for unknown coefficients :



Barycentric Interpolation

● Background on Barycentric Interpolation in a Triangle

● Solution of                                               (e.g. Cramer's rule):

with

Inside triangle criteria



Barycentric Interpolation

● Barycentric Interpolation in a Tetrahedron

● Analogous to the triangle case



Barycentric Interpolation

Linear function in triangle/tetrahedron:

Gradient of a linear function:

Constant!

For a linear function in a triangle,

the gradient is a constant 2D vector.

For a linear function in a tetrahedron,

the gradient is a constant 3D vector.
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continuous representation of a variable
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Grids and Interpolation

● There is a variety of further scattered data interpolation schemes, e.g., radial 

basis functions.

● One of them is the Shepard approach:

● The weight function wk(x,y) is constructed in such a way that the impact of an 

observation point decreases far away from the observation point, i.e.,



Shepard Interpolation (Inverse Distance Weighting)



Grids and Interpolation

Shepard interpolation
2D Voronoi diagram



Grids and Interpolation

● For this choice of       , all data values have global impact.

● Using the Franke Little weight function, local impact can be achieved. 



● Fields are continuous representations of variables

● analytic formulae

● interpolation

● in grids / meshes

● gridless

● Interpolation

● Linear / Cubic basis functions

● Multidimensional interpolation (bi-linear, tri-linear …)

● Linear interpolation on triangles and tetrahedra

● Grid free interpolation using Shepard approach

● Gradients

● Derivatives of (interpolation) formulae

● Finite differences

Summary

Grids and Interpolation


