Visualization, DD2257
Prof. Dr. Tino Weinkauf

Data Description

Continuous Data

Fields

continuous representation of a variable

Fields
analytic formulae
function in 1D:

$$
f(x)=x^{3}
$$

function in 2D:

$$
f(x, y)=x^{2}+x y
$$

function in 3D:

$$
f(x, y, z)=3 x+\frac{x y}{z+1}
$$

Fields

$$
\begin{gathered}
f(x)=x^{3} \\
f(x, y)=x^{2}+x y \\
f(x, y, z)=3 x+\frac{x y}{z+1}
\end{gathered}
$$

$f(\mathbf{x})=\cdots$
 $\mathbf{x} \in E^{n}$

observation space can be 2D, 3D, ... easier to describe with a single, bold \mathbf{x}

scalar field	vector field	tensor field
$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$	$\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}$	$\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}$
$\begin{aligned} & s(\mathbf{x}) \\ & \text { with } \mathbf{x} \in \mathbb{E}^{n} \end{aligned}$	$\mathbf{v}(\mathbf{x})=\left(\begin{array}{c}c_{1}(\mathbf{x}) \\ \vdots \\ c_{m}(\mathbf{x})\end{array}\right)$ with $\mathbf{x} \in \mathbb{E}^{n}$	$\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\ \vdots & & \vdots \\ c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})\end{array}\right)$ with $\mathbf{x} \in \mathbb{E}^{n}$
$s(x, y)=2 x y+4 y^{2}$	$\mathbf{v}(x, y)=\binom{2 x-y}{2 y}$	$\mathbf{T}(x, y)=\left(\begin{array}{cc}2 x & 1 \\ x+y & -y\end{array}\right)$
2D scalar field	2D vector field	2D tensor field

Derivatives

many applications
normal for volume rendering
critical point classification for vector field topology

In scalar fields: describes direction of steepest ascend

scalar field

$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$

The first derivative of a scalar field is a vector field called gradient. It consists of the partial derivatives of the scalar function $s(\mathbf{x})$ for each dimension of the observation space.
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\mathbf{v}(\mathbf{x})=\left(\begin{array}{c}
c_{1}(\mathbf{x}) \\
\vdots \\
c_{m}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$$
\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}
c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\
\vdots & & \vdots \\
c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
s(x, y) \cdots \nabla s(x, y)=\binom{\frac{\partial s}{\partial x}}{\frac{\partial s}{\partial y}}=\binom{s_{x}}{s_{y}}
$$

2D scalar field
scalar field
$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$
$s(\mathbf{x})$
with $\mathbf{x} \in \mathbb{E}^{n}$
$s(x, y)$
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\left(c_{1}(\mathbf{x})\right)
$$

The second derivative of a scalar field is a tensor field called Hessian. It consists of the partial derivatives of $s(\mathbf{x})$ derived twice for each dimension of the observation space.

$$
\nabla s(x, y)=\binom{\frac{\partial s}{\partial x}}{\frac{\partial s}{\partial y}}=\binom{s_{x}}{s_{y}}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$$
\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}
c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\
\vdots & & \vdots \\
c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
\nabla^{2} s(x, y)=\left(\begin{array}{ll}
s_{x x} & s_{x y} \\
s_{y x} & s_{y y}
\end{array}\right)
$$

scalar field
$s: \mathbb{E}^{n} \rightarrow \mathbb{R}$

$$
s(\mathbf{x})
$$

with $\mathbf{x} \in \mathbb{E}^{n}$
vector field

$$
\mathbf{v}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\left(c_{1}(\mathbf{x})\right\rangle
$$

The first derivative of a vector field is a tensor field called Jacobian. It consists of the partial derivatives of $\mathbf{v}(\mathbf{x})$ for each dimension of the observation space.

$$
\mathbf{v}(x, y)=\binom{u(x, y)}{v(x, y)}
$$

tensor field

$$
\mathbf{T}: \mathbb{E}^{n} \rightarrow \mathbb{R}^{m \times b}
$$

$$
\mathbf{T}(\mathbf{x})=\left(\begin{array}{ccc}
c_{11}(\mathbf{x}) & \ldots & c_{1 b}(\mathbf{x}) \\
\vdots & & \vdots \\
c_{m 1}(\mathbf{x}) & \ldots & c_{m b}(\mathbf{x})
\end{array}\right)
$$

$$
\text { with } \mathbf{x} \in \mathbb{E}^{n}
$$

$$
\nabla \mathbf{v}(x, y)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)
$$

2D vector field

Fields

continuous representation of a variable
sampled data:
interpolation formulae used to create a continuous representation

- A grid consists of a finite number of samples
- The continuous signal is known only at a few points (data points)
- In general, data is needed in between these points
- By interpolation we obtain a representation that matches the values at the data points
- Reconstruction at any other point possible

- Simplest approach: Nearest-Neighbor Interpolation
- Assign the value of the nearest grid point to the sample.

- Linear Interpolation (in 1D domain)
- Domain points x, scalar function $f(x)$

General:

$$
f(x)=\frac{x_{1}-x}{x_{1}-x_{0}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) \quad x \in\left[x_{0}, x_{1}\right]
$$

Special Case:

$$
\begin{aligned}
f(x)=(1-x) f(0)+x f(1) & x \in[0,1] \\
& =\left[\begin{array}{ll}
(1-x) & x
\end{array}\right]\binom{f(0)}{f(1)}=\left[\begin{array}{cc}
1 & x
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\binom{f(0)}{f(1)} \\
\text { Basis Coefficients } &
\end{aligned}
$$

- Linear Interpolation (in 1D domain)
- Sample values $f_{i}:=f\left(x_{i}\right)$

- C^{0} Continuity (discontinuous first derivative)
- Use higher order interpolation for smoother transition, e.g., cubic interpolation
- Cubic Hermite Interpolation (in equidistant 1D domain)
- $x_{i+1}=x_{i}+1$

f_{-1}
- Cubic
"interpolate values and derivatives at x_{0} and $x_{1}{ }^{\text {" }}$
C^{1} Continuity
(discontinuous
second derivatives)
Linear $\quad f(x)=\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\binom{f_{0}}{f_{1}}$
$\underset{\text { (Catmull Rom) }}{\text { Cubic }} f(x)=\left[\begin{array}{llll}1 & x & x^{2} & x^{3}\end{array}\right]\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 1 & -\frac{5}{2} & 2 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]\left(\begin{array}{c}f_{-1} \\ f_{0} \\ f_{1} \\ f_{2}\end{array}\right)$
- Interpolation in 2D, 3D, 4D, ...
- Tensor Product Interpolation
- Perform linear / cubic ... interpolation in each $x, y, z \ldots$ direction separately

Bi-Linear

Bi-Cubic

- Tensor Product Interpolation

- Extend interpolation from 1D to higher dimensions
- Coefficients f_{i}, associated basis functions $b_{i}(x)$ (linear / cubic / ...)
$1 \mathrm{D} \quad f(x)=\sum_{i=0}^{n} b_{i}(x) f_{i}=\left[\begin{array}{llll}b_{0}(x) & \cdots & b_{n}(x)\end{array}\right]\left[\begin{array}{c}f_{0} \\ \vdots \\ f_{n}\end{array}\right]$
2D, "bi-" $\quad f(x, y)=\sum_{j=0}^{m} \sum_{i=0}^{n} b_{i}(x) b_{j}(y) f_{i j}$

$$
=\left[b_{0}(x) \cdots b_{n}(x)\right]\left[\begin{array}{ccc}
f_{00} & \cdots & f_{0 m} \\
\vdots & \ddots & \vdots \\
f_{n 0} & \cdots & f_{n m}
\end{array}\right]\left[\begin{array}{c}
b_{0}(y) \\
\vdots \\
b_{m}(y)
\end{array}\right]
$$

3D, "tri-" $\quad f(x, y, z)=\sum_{k=0}^{p} \sum_{j=0}^{m} \sum_{i=0}^{n} b_{i}(x) b_{j}(y) b_{k}(z) f_{i j k}$

- Example: Linear Tensor Product Interpolation
- Number of basis functions / coefficients $m=1, n=1, p=1$

1D, linear $\quad f(x)=\sum_{i=0}^{n} b_{i}(x) f_{i}=(1-x) f_{0}+x f_{1}$

- Example: Linear Tensor Product Interpolation
- Number of basis functions / coefficients $m=1, n=1, p=1$

2D, "bi-linear"

$$
f(x, y)=\sum_{j=0}^{m} \sum_{i=0}^{n} b_{i}(x) b_{j}(y) f_{i j}
$$

$$
\begin{aligned}
&=(1-x)(1-y) f_{00}+x(1-y) f_{10}+ \\
&(1-x) y f_{01}+x y f_{11} \\
&=(1-y)\left((1-x) f_{00}+x f_{10}\right)+ \\
& \quad y\left((1-x) f_{01}+x f_{11}\right)
\end{aligned}
$$

"interpolate twice in x direction and then once in y direction"

- Example: Bi-linear interpolation in a 2D cell

- Repeated linear interpolation

- Example: Linear Tensor Product Interpolation

- Number of basis functions / coefficients $m=1, n=1, p=1$

3D, "tri-linear" $\quad f(x, y, z)=\sum_{k=0}^{p} \sum_{j=0}^{m} \sum_{i=0}^{n} b_{i}(x) b_{j}(y) b_{k}(z) f_{i j k}$

"interpolate four times in x direction, twice in y direction, and once in z direction"

$$
\begin{aligned}
& f(x)= \\
& \begin{array}{r}
(1-x) \star f_{0} \\
x * f_{1}
\end{array} \\
& \text { 1D linear } \\
& f(x, y)= \\
& (1-x) *(1-y) * f_{00} \\
& +\quad x *(1-y) * f_{10} \\
& +(1-x) * \quad y * f_{01} \\
& +X^{*} \quad y^{*} f_{11} \\
& f(x, y, z)= \\
& (1-x) \star(1-y) \star(1-z) \star f_{000} \\
& +\quad x *(1-y) *(1-z) * f_{100} \\
& +(1-x) * \quad y *(1-z) * f_{010} \\
& +\quad x * \quad y *(1-z) * f_{110} \\
& +(1-x) *(1-y) * \quad z * f_{001} \\
& +x^{*}(1-y) \star \quad z * f_{101} \\
& \begin{array}{lr}
+ & (1-x)^{*} \\
+ & \mathrm{X}^{\star}
\end{array} \mathrm{Y}^{\star} \quad \mathrm{Z}^{\star} \mathrm{Z}^{\star} \mathrm{f}_{011} \mathrm{f}_{111} \\
& \text { 3D tri-linear }
\end{aligned}
$$

Two ways to estimate gradients:

- Direct derivation of interpolation formula
- Finite differences schemes

$$
\nabla s(x, y)=\binom{\frac{\partial s}{\partial x}}{\frac{\partial s}{\partial y}}=\binom{s_{x}}{s_{y}}
$$

Gradient of a 2D scalar field

$$
\nabla \mathbf{v}(x, y)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)
$$

Jacobian of a 2D vector field

- Field Function Derivatives, Bi-Linear

$$
f(x, y)=\left[\begin{array}{ll}
(1-x) & x
\end{array}\right]\left[\begin{array}{ll}
f_{00} & f_{01} \\
f_{10} & f_{11}
\end{array}\right]\left[\begin{array}{c}
(1-y) \\
y
\end{array}\right] \quad \longrightarrow \quad \begin{gathered}
\text { derive this } \\
\text { interpolation formula }
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial x} & =\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
f_{00} & f_{01} \\
f_{10} & f_{11}
\end{array}\right]\left[\begin{array}{c}
(1-y) \\
y
\end{array}\right] \\
& =\left(f_{10}-f_{00}\right)(1-y)+\left(f_{11}-f_{01}\right) y
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial y} & =[(1-x) x]\left[\begin{array}{ll}
f_{00} & f_{01} \\
f_{10} & f_{11}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left(f_{01}-f_{00}\right)(1-x)+\left(f_{11}-f_{10}\right) x
\end{aligned}
$$

$$
\nabla f(x, y)=\binom{\frac{\partial f(x, y)}{\partial x}}{\frac{\partial f(x, y)}{\partial y}}
$$

"constant in x direction"
"constant in y direction
final gradient

- Problem of exact linear function differentiation: discontinuous gradients

- Solution:
- Use higher order interpolation scheme (cubic)
- Use finite difference estimation

- Finite Differences Schemes

- Apply Taylor series expansion around samples

- Finite Differences Schemes

$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+h \frac{\mathrm{~d} f\left(x_{i}\right)}{\mathrm{d} x}+\frac{h^{2}}{2} \frac{\mathrm{~d}^{2} f\left(x_{i}\right)}{\mathrm{d} x^{2}}+O\left(h^{3}\right) \\
& f\left(x_{i-1}\right)=f\left(x_{i}\right)-h \frac{\mathrm{~d} f\left(x_{i}\right)}{\mathrm{d} x}+\frac{h^{2}}{2} \frac{\mathrm{~d}^{2} f\left(x_{i}\right)}{\mathrm{d} x^{2}}+O\left(h^{3}\right)
\end{aligned}
$$

Difference

$$
\begin{aligned}
& \rightarrow \quad\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)-\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)=2 h \frac{\mathrm{~d} f\left(x_{i}\right)}{\mathrm{d} x}+O\left(h^{3}\right) \\
& \rightarrow \quad \frac{\mathrm{d} f\left(x_{i}\right)}{\mathrm{d} x} \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h} \quad \begin{array}{c}
\text { Central } \\
\text { difference }
\end{array}
\end{aligned}
$$

- Central differences have higher approximation order than forward / backward differences
- 1D Example, linear interpolation

- Finite Differences Schemes, Higher order derivatives

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} f\left(x_{i}\right)}{\mathrm{d} x^{2}} \approx \frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{h^{2}} \\
& \frac{\partial^{2} f\left(x_{i}, y_{j}\right)}{\partial x y} \approx \frac{f\left(x_{i+1}, y_{j+1}\right)-f\left(x_{i+1}, y_{j-1}\right)-f\left(x_{i-1}, y_{j+1}\right)+f\left(x_{i-1}, y_{j-1}\right)}{4 h_{x} h_{y}}
\end{aligned}
$$

- Piecewise Linear Interpolation in Triangle Meshes

- Linear Interpolation in a Triangle
- There is exactly one linear function that satisfies the interpolation constraint
- A linear function can be written as

$$
f(x, y)=a+b x+c y
$$

- Polynomial can be obtained by solving the linear system

$$
\left[\begin{array}{lll}
1 & x_{0} & y_{0} \\
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2}
\end{array}\right]
$$

- Linear in x and y
- Interpolated values along any ray in the plane spanned by the triangle are linear along that ray
- Barycentric Coordinates:
- Planar case:

Barycentric combinations of 3 points

$$
\begin{aligned}
& \mathbf{p}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}, \text { with }: \alpha+\beta+\gamma=1 \\
& \gamma=1-\alpha-\beta
\end{aligned}
$$

- Area formulation:

$$
\alpha=\frac{\operatorname{area}\left(\Delta\left(\mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}\right)\right)}{\operatorname{area}\left(\Delta\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right)}, \beta=\frac{\operatorname{area}\left(\Delta\left(\mathbf{p}_{1}, \mathbf{p}_{3}, \mathbf{p}\right)\right)}{\operatorname{area}\left(\Delta\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right)}, \gamma=\frac{\operatorname{area}\left(\Delta\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}\right)\right)}{\operatorname{area}\left(\Delta\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right)}
$$

Barycentric Interpolation in a Triangle

The linear function of a triangle can be computed at any point as

$$
f(x, y)=\alpha(x, y) f_{0}+\beta(x, y) f_{1}+\gamma(x, y) f_{2}
$$

with $\alpha+\beta+\gamma=1$ as barycentric coordinates.
To be inside triangle: $0 \leq \alpha, \beta, \gamma \leq 1$

- Background on Barycentric Interpolation in a Triangle
- The linear function of a triangle can be computed at any point as

$$
f(x, y)=\alpha_{0}(x, y) f_{0}+\alpha_{1}(x, y) f_{1}+\alpha_{2}(x, y) f_{2}
$$

with $\alpha_{0}+\alpha_{1}+\alpha_{2}=1 \quad$ (Barycentric Coordinates)

- This also holds for the coordinate $\mathbf{x}=\binom{x}{y}$ of the triangle:

$$
\mathbf{x}=\alpha_{0} \mathbf{x}_{0}+\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}
$$

\rightarrow Can be used to solve for unknown coefficients $\alpha_{i}:$

$$
\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Background on Barycentric Interpolation in a Triangle
- Solution of $\left[\begin{array}{ccc}x_{0} & x_{1} & x_{2} \\ y_{0} & y_{1} & y_{2} \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{0} \\ \alpha_{1} \\ \alpha_{2}\end{array}\right]=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right] \quad$ (e.g. Cramer's rule):

$$
\begin{array}{ll}
\alpha_{0}=\frac{1}{2 A} \operatorname{det}\left(\left[\begin{array}{ccc}
x & x_{1} & x_{2} \\
y & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]\right) & \alpha_{0}=\frac{\operatorname{Area}\left(\left[\mathbf{x}, \mathbf{x}_{1}, \mathbf{x}_{2}\right]\right)}{\operatorname{Area}\left(\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}\right]\right)} \\
\alpha_{1}=\frac{1}{2 A} \operatorname{det}\left(\left[\begin{array}{ccc}
x_{0} & x & x_{2} \\
y_{0} & y & y_{2} \\
1 & 1 & 1
\end{array}\right]\right) & \alpha_{1}=\frac{\operatorname{Area}\left(\left[\mathbf{x}_{0}, \mathbf{x}, \mathbf{x}_{2}\right]\right)}{\operatorname{Area}\left(\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}\right]\right)} \\
\alpha_{2}=\frac{1}{2 A} \operatorname{det}\left(\left[\begin{array}{ccc}
x_{0} & x_{1} & x \\
y_{0} & y_{1} & y \\
1 & 1 & 1
\end{array}\right]\right) & \alpha_{2}=\frac{\operatorname{Area}\left(\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}\right]\right)}{\operatorname{Area}\left(\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}\right]\right)}
\end{array}
$$

$$
\begin{aligned}
& \text { with } \\
& A=\frac{1}{2} \operatorname{det}\left(\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]\right)
\end{aligned}
$$

Inside triangle criteria

$$
0 \leq \alpha_{0}, \alpha_{1}, \alpha_{2} \leq 1
$$

- Barycentric Interpolation in a Tetrahedron
- Analogous to the triangle case

Linear function in triangle/tetrahedron:

$$
f(x, y)=a+b x+c y
$$

Gradient of a linear function:

Constant!

For a linear function in a triangle, the gradient is a constant 2D vector.

For a linear function in a tetrahedron, the gradient is a constant 3D vector.

Fields

continuous representation of a variable
sampled data:
interpolation formulae used to create a continuous representation

- There is a variety of further scattered data interpolation schemes, e.g., radial basis functions.
- One of them is the Shepard approach:

$$
f(x, y)=\sum_{k=1}^{n} \frac{w_{k}(x, y)}{\sum_{j=1}^{n} w_{j}(x, y)} f_{k}
$$

- The weight function $\mathrm{w}_{\mathrm{k}}(\mathrm{x}, \mathrm{y})$ is constructed in such a way that the impact of an observation point decreases far away from the observation point, i.e.,

$$
w_{k}(x, y)=\frac{1}{\left(\left(x-x_{k}\right)^{p}+\left(y-y_{k}\right)^{p}\right)^{\frac{1}{p}}}=\left(\frac{1}{d_{k}}\right)
$$

$p=1$

p $=2$

$p=4$

2D Voronoi diagram

Shepard interpolation

- For this choice of w_{k}, all data values have global impact.
- Using the Franke Little weight function, local impact can be achieved.

$$
w_{k}(x, y)=\left(\frac{\max \left(r-d_{k}, 0\right)}{r d_{k}}\right)^{2}
$$

Summary

- Fields are continuous representations of variables
- analytic formulae
- interpolation
- in grids / meshes
- gridless
- Interpolation
- Linear / Cubic basis functions
- Multidimensional interpolation (bi-linear, tri-linear ...)
- Linear interpolation on triangles and tetrahedra
- Grid free interpolation using Shepard approach
- Gradients
- Derivatives of (interpolation) formulae
- Finite differences

