PDEs

Michael
Hanke

Example: Partial Differential Equations

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

© Michael Hanke 2018 1 (40)

PDEs

Michael
Hanke

Introduction

Finite
Difference Ap-

proximations

Implementation
of Differential
Operators

Boundary
Conditions

Summary of
the Course

Outline

@ Introduction

@ Finite Difference Approximations

© Implementation of Differential Operators
O Boundary Conditions

© Summary of the Course

© Michael Hanke 2018

2 (40)

Nictie! What Do We Have

Introduction

e Two simple classes for structured grids (Domain, Curvebase)

e A simple implementation of a matrix class (Matrix; don't use it
for production codes!)

© Michael Hanke 2018 3 (40)

PDEs

Michacl What Do We Want

Hanke

Introduction

e A class for representing grid functions
e Imposing boundary conditions
e A class for solving PDEs
Our running example will be the heat equation in 2D,
0 0? 0?

EU: ﬁU“FTyQU.

© Michael Hanke 2018 4 (40)

PDEs

Michael The Domain Class

Hanke
This is what we have so far:

Introduction
class Domain {

public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&) ;

void generate_grid(...);
// more members

private:
Curvebase *sides[4];
// more members

};

o We will need additional members for handling grids. Since grids
do not allow any algebraic manipulation, using our Matriz class
is not appropriate.

e We will use C-style arrays.

e It might be more convenient to use STL containers (e.g.,
vector).

© Michael Hanke 2018 5 (40)

PDEs

T The Domain Class: Enhanced
Introduction
class Domain {
public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&) : m(0), n(0), x(nullptr),
y(nullptr) {3}

void generate_grid(int m_, int n_);

int xsize() { return m; 2

int ysize() { return n; }

Point operator() (int i, int j);

bool grid_valid() { return m != 0; }

// more members

private:
Curvebase *sides[4];
int m, n;

double *x, *y;
// more members

};

© Michael Hanke 2018

6 (40)

PDEs

ey One Dimensional Differences 1
- e Consider a grid Q,
E‘i?;::e nce Ap-
proximations a=Xxg<Xx1 < < Xp_1 < Xm = b.

e Let hj = x; — x;_1. Then define, for a grid function v : Q) — R,

up—uj—1
hi
Uip1 — Uj

D_u,- =

D+U,' = h .
i+

o If u is the restriction of a smooth function onto y, these
approximations are first order accurate.

o If the grid is equidistant, Dy D_ is a second order accurate
approximation of u”(x;) and

Uip1 — 2u; + Ui
B2

D+D7 u; =

© Michael Hanke 2018 7 (40)

PDEs

Nictie! One Dimensional Differences 2

Finite
Difference Ap-
proximations

U1 — Uj—1

Du; =
“ 2h

e First oder approximation to u’ on a general grid

e Second order accuracy on a constant stepsize grid

© Michael Hanke 2018 8 (40)

PDEs

Nictie! Boundaries

Finite . - .
S e Ay e The operators introduced above are not applicable at boundaries.

proximations

e Possibility 1: One-sided differences

Sug — 4 + up
3h
Un—o — 4Um—_1 + 3um
3h

DUO =

Du,, =

e Possibility 2: Use ghost points

up —u_q
2h

Uny1 — Unm—1
Du,, = — o

DU() =

How to get values for the ghost points?

© Michael Hanke 2018 o (40)

PDEs

Nictie! Nonuniform Grids

Finite
Difference Ap-
proximations

e Order of approximation is determined using Taylor expansions.
e Ansatz:

U (x) =~ a_u(xi_1) + aou(x;) + ay u(xiy1) =: Dou(x;)

e Taylor expansion:
1
u(xi—1) = u(x;) — hiv'(x;) + Eh,?u”(x,-) + O(h®)

1
u(xiz1) = u(x;) + hiat' (%) + Eh,?ﬂ u(x) + O(h3)

© Michael Hanke 2018 10 (40)

PDEs

erie. Nonuniform Grids (cont)

i e Inserting into the expression for Dyu, we obtain after coefficient
Difference Ap- Comparison

proximations

g = hin
— hi(hi + hita)
_ hipi—h;
%= hihit1
h;
a=—-
hiy1(hi + hit1)
and)
Dou(x;) — u'(x;) = gh,-h,-ﬂu'”(x,-) + ...
e For an equidistant grid, the coefficients reduce to a_ = —1/2h,

ap =0, ay =1/2h.
e One sided expressions??

© Michael Hanke 2018 11 (40)

PDEs

Nictie! An Alternative Idea

Finite
Difference Ap-
proximations

e Assume that the grid is created using a mapping
¢ :[0,1] — [a, b] with x; = &(s;), i =0,..., m with a uniform
grid

si=io, o=m1

e Then, du/ds = du/dx - dx/ds, and

1 Uiyl — Uji—1

dx(s;)/ds 20

ux(x;) =~

is a second order approximation.

© Michael Hanke 2018 12 (40)

PDEs

Michael And Another Idea

Hanke

Finite

Difference Ap-

it o If the derivative dx/ds is not known, it can be approximated
with second order accuracy by

%(5.) o Kitl T X1
ds 20
such that
Uit1 — Uj—1
ug(x;) @ ————
Xji+1 — Xi—1

is second order accurate!

e Needed: ¢ is a smooth mapping!

e Note: We need only two grid points in order to obtain the same

order of accuracy as in the approximation in physical domain.

© Michael Hanke 2018

13 (40)

PDEs

Michae Approximation of v’

Hanke

Finite
Difference Ap-
proximations

Going either way, we have an approximation
u'(x;) =~ Dou;.
A second order approximation to the second derivative can be defined
by
UH(X,') ~ D2U,' = DoDoU,'.

This approximation evaluates to a five-point stencil!

© Michael Hanke 2018 14 (40)

PDEs

Yiche! Example: Comparison of Accuracy
X 10° Error
Finite -
Difference Ap- 2l

proximations

s N
4 A
J
7 \
n o \
v \
/// \
— \
o— v
—_ N\ /
e \
L t
\.

\ Y4
2 Y A
\ /
W /1
3 N . ////
X /i
- - Grid mapping - x'(s) \ /7
—4r | - - Grid mapping - approx. x'(s) o
— Physical domain
o 1 2 3 4 5 6 7

u(x) =sinx
_,_1+4tanh(é(s —1)/2)
() =2 —— o)

=5

Hyperbolic tangent stretching, 100 gridpoints.

© Michael Hanke 2018 15 (40)

PDEs

Nictie! Conclusions

Finite
Difference Ap-
proximations

o All approximations are 2nd order accurate.

e In this simple example, approximation in physical domain is more
accurate.

e The stencil (number of grid points used) is larger in physical
domain for obtaining the same order of accuracy.

© Michael Hanke 2018 16 (40)

PDEs

iy 2D: Physical Domain

Finite
Difference Ap-
proximations Ansatz:

Ux(Xi,j,y,',j) ~ E Akl Uitk j+1
Taylor expansion around (x; j, yi j):

E Ak, Uitk j+1
kI

1 B d
= akr) i (kg — %ij) g T Wiskr = yij)5-)"
P} =0V dy

P Hv—p
=D Z Z (:) ikt = %) Wiegr = ¥id) ™ P | 52 ayv—r"

v=0 p=0

© Michael Hanke 2018 17 (40)

PDEs

e Dy x in Physical Domain
First order:
Difes 22 S a0 =0
k.l

D ani(iskger = xig) = 1
k,l

> akiYiskjrr — yij) =0
Kl

Second order additionally:

> aki(Xivkjir — xij)° =0
ol

> aki(Nivkjir = xi)) ivkjer — ¥ij) =0
k.l

> aki(Yivkjr1 —yi))* =0
P,

So we expect 6 gridpoints necessary for second order accuracy!
© Michael Hanke 2018 18 (40)

PDEs

Michael
Hanke

Finite

Difference Ap-

proximations

Stencil in Reference Coordinates

Remember:

e Let ® to a (smooth) one-to-one mapping @ : [0,1]2 — Q.

e For given m, n, a uniform grid on [0,1]? can be defined by:

§i=im, h=1/m i=0,....,m,
nj =jh2, ho=1/n, j=0,...,n

e A strucured grid on Q can then simply be obtained via

X"J':q)x(givnj)a }/ij:q)y(fi,nj)a i=0,...,mj=0,...

© Michael Hanke 2018

19 (40)

PDEs

Michl Reference Coordinates (cont)
e Using the chain rule of differentiation, we obtain
Eii?;:_:enc.e Ap- au()<7-y) _ @ ad)x + @ ad)y
proxlmatlons ag —_— ax ag 8y af
du(x,y) _ Ou 0Py N Ju 09,
on Ox On Oy On
Since the transformation @, ®, is known, this is a linear system
for the partial derivatives du/0x,du/dy.

0D, 9P,
_ 0, 0
J=| ss, o5,

o et

on on
Then

9% an am %
ou 1 8u.8¢x_@.8¢x
an O& o0& On

du_ 1 (0u 06, ou 00,
Ox detJ

© Michael Hanke 2018 20 (40)

PDEs

Michael

o Reference Coordinates (cont)

Finite
Difference Ap-
proximations

e The derivatives with respect to reference coordinates can be
approximated by standard stencils (4-point stencil).

e Once all partial derivatives w r t £ have been evaluated, the
necessary partial derivatives w r t x, y can be computed.

© Michael Hanke 2018 21 (40)

PDEs

Michael
Hanke

Implementation
of Differential
Operators

© Michael Hanke 2018

Class for Grid Functions:
Requirements

e (Scalar) grid functions are defined on grids.

e We are using structured grids as represented in the class Domain.
e Operations allowed with grid functions:

Addition, multiplication by a scalar (they form a vector space)
Pointwise multiplication (together, this becomes a commutative
algebra)

Differentiation (e.g., by finite differences)

Computation of norms

Integration (? maybe)

22 (40)

PDEs

Michael
Hanke

Implementation
of Differential
Operators

© Michael Hanke 2018

Further Considerations

e In the two-dimensional case, many of these operations are
already implemented in the Matrix class!

e However, some operations are not meaningful for grid functions,

e.g., matrix-matrix multiplication.

o A grid functions lives only on a specific grid:

e Shall the grid be part of an object?
e Many grid functions share the same grid!

e Algebraic manipulations are only defined for grid functions living

on the same grid

23 (40)

PDEs

Michael
Hanke

Implementation
of Differential
Operators

© Michael Hanke 2018

Remember: The Matrix Class

class Matrix {
int m, n; // should be size_t
double *A;
public:
Matrix(int m_ = 0, int n_ = 0)
A(nullptr) {
if (m*n > 0) {
A = new double[m*n];
std::fill(A,A+M*n,0.0);

}
}
// etc
}s

: m(m_), n(n_),

24 (40)

PDEs

Michacl Implementation of Grid Functions

class GFkt {
i private:
e Matrix u;
Domain *grid;
public:
GFkt (Domain *grid_) : u(grid_->xsize()+1,
grid_->ysize()+1), grid(grid_) {%}
GFkt(const GFkt& U) : u(U.uw), grid(U.grid) {}
GFkt& opearator=(const GFkt& U);
GFkt operator+(const GFkt& U) const;
GFkt operator*(const GFkt& U) const;
// etc
3

© Michael Hanke 2018 25 (40)

PDEs

i A Sample Implementation
GFkt GFkt::operator+(const GFkt& U) const {
if (grid == U.grid) { // defined on the same grid?
GFkt tmp(grid);
Implementation

(P e tmp.u = utU.u; // Matrix::operator+()
OEStators return tmp;

}

else error();

}

GFkt GFkt::operator*(const GFkt& U) const {

if (grid == U.grid) { // defined on the same grid?
GFkt tmp(grid);
for (int j = 0; j <= grid.ysize(); j++)

for (int i = 0; i <= grid.xsize(); i++)
tmp.u(i,j) = u(di,j)*U.u(d,j);

return tmp;

}

else error();

}

© Michael Hanke 2018 26 (40)

PDEs

Michael A Problem And Its Solution

Implementation
of Differential
Operators

The grid is handled by the caller.

In the above implementation, the caller may delete the grid such
that all objects referring to it have a dangling pointer!

In C++ 11 there is a solution: smart pointers

Smart pointers belong to the C++ library, include file: memory

© Michael Hanke 2018 27 (40)

PDEs

Michael
Hanke

Implementation
of Differential
Operators

© Michael Hanke 2018

Smart Pointers

There are two types of them: shared ptr and unique _ptr.

Both classes are in fact template classes: The template
argument is a typename.

shared _ptr uses a reference count: As soon as the reference
count reaches 0, the dynamic object will be destroyed. But not
earlier!

This way, all resources will be freed (including dynamic memory).

C-type pointers and smart pointers cannot be mixed! There is
always an explicit type cast necessary! Recommendation: Avoid
mixing.

28 (40)

PDEs

Merie. Smart Pointers (cont)

Create a smart pointer, initialize it to 0 (nullptr):

Implementation shared_ptr<class> pl;
of Differential
Operators

The equivalent of new:

shared_ptr<class> p2 = make_shared<class>(args);

The following statement is in error:

shared_ptr<class> p3 = new class(args); // Error!

But this works:

shared_ptr<class> p3
shared_ptr<class>(new class(args));

There is no equivalent of delete needed.

© Michael Hanke 2018 20 (40)

PDEs

Hichel A Better Implementation of GFkt

class GFkt {

private:
Matrix u;
Impl. tati 3 :d -
i shared_ptr<Domain> grid;
Operators publ 1 c:

GFkt (shared_ptr<Domain> grid_)
u(grid_->xsize()+1,grid_->ysize()+1),
grid(grid_) {}

GFkt(const GFkt& U) : u(U.w), grid(U.grid) {}

// etc
I
Notes:

o We assume silently that, once a grid has been generated, it will
never be changed!

e |t is most probably a good idea to use shared pointers in
Domain, too

shared_ptr<Curvebase> sides[4];

© Michael Hanke 2018 30 (40)

PDEs

Michael

Vichas Implementation of Dy,

GFkt GFkt::DOx() const {
et GFkt tmp(grid);
Operators if (gr1d—>gr1d_valld()) {
// generate derivative in tmp

// according to one of the possibilities above
X
return tmp;

}

e The function DOy can be implemented similarly.

e In order to reduce overhead, it might be a good idea to
implement even

void GFkt::DOxy(GFkt *dx, GFkt *dy) const;

© Michael Hanke 2018 31 (40)

PDEs

iy Boundary Conditions

Boundary Name Prescribed Interpretation
Dirichlet u Fixed temperature
Neumann Ou/On Energy flow
Robin (mixed) Ou/0n+ f(u) Temperature dependent flow
Periodic

Boundary conditions have a crucial impact on the solution.

© Michael Hanke 2018

32 (40)

PDEs

Mokl What are Boundary Conditions?

@ The mathematician’s point of view:

domain
+ differential equation
el + boundary conditions

® The physicist's point of view:

differential equation —— physics

domain — space

boundary conditions — influence of outer world
©® The software engineer’s point of view:

differential equation — expression of

differentials
domain — grid

boundary conditions — what??

© Michael Hanke 2018 33 (40)

PDEs

Michael
Hanke

Boundary
Conditions

© Michael Hanke 2018

Object-Oriented Representation

e As part of the PDE

e mathematical interpretation
e requires high-level representation of equation and discretization
e difficult to obtain efficiency

e As part of the grid function

e mathematically correct
e no class for PDEs needed
e convenient for exlicit time-stepping

o As part of the operator (e.g., D)

e convenient for implicit and explicit methods
e can be difficult to implement
e may encounter mathematical contradictions if used wronly

34 (40)

PDEs

i A First Attempt

Associate boundary conditions with grid functions:

class Solution {
public:
Boundary Solution(Domain *D) : sol(D) {}
eneiions ~Solution();
void timesteps(double dt, int nsteps);
void init(); // Set initial condition
void print();
private:
GFkt sol;
void impose_bc();

};

impose_bc () will be called in timesteps () for imposing the
boundary conditions.

© Michael Hanke 2018 35 (40)

PDEs

Michael
Hanke

Boundary
Conditions

© Michael Hanke 2018

Discussion

The proposed implementation is questionable because the
boundary conditions and timestepping are “hardwired"”.

It is better to have a class for boundary conditions:
class BCtype {
public:
BCtype (GFkt& u, int boundary_id);
virtual void impose(GFkt& u) = O0;

};

The actual definition of the boundary condition takes place in
derived classes.

This way, several boundaries can share the same condition (e.g.,
homogeneous Dirichlet conditions).

Classes can be derived for Dirichlet, Neumann, Robin boundary
conditions.

36 (40)

PDEs

Michas! Example Implementation

Hanke
Assumptions:

e The grid has four distinct edges (as ours in the previous Domain

class).
e Each edge is associated with one boundary condition, only.
Then:
Boundary
i class Solution {
public:

Solution(Domain *D) : sol(D) {}
~“Solution();
void print();
private:
GFkt sol;
shared_ptr<BCtype> bcs[4];
virtual void init() = 0;
virtual void bc() = 0;
};
We have separated: the grid, the equation, the initial conditions, and

the boundary conditions.
© Michael Hanke 2018 37 (40)

PDEs

Michael
Hanke

Boundary
Conditions

Time Stepping

For the heat equation in 2D, we can implement the explicit Euler
method now:

Solution u(&d);

u.init();

for (int step=0; step < maxsteps; step++) {
u += dt*(u.D2x()+u.D2y());
t += dt;
u.bcQ);

}

(Provided the missing functions are implemented along the lines
provided before)

© Michael Hanke 2018 38 (40)

PDEs

Michael
Hanke

Boundary
Conditions

© Michael Hanke 2018

Summary

e Finite difference approximations on structured grids.

e Smart pointers
e Implementation strategies for differential operators, boundary
conditions, and time steppers.

39 (40)

PDEs

T Course Summary

C++
e Basic elements of C4++
o Abstract data types, C++ classes

Constructors, destructors, memory management, copy, move

e Operator overloading

Summary of
the Course

Inheritance, abstract classes
Templates, STL
e I/O

Scientific Computing

e Structured grids, differential operators, boundary conditions
e Implemetation strategies and their C++ tools
o Efficient programming

e Scientific libraries

© Michael Hanke 2018 40 (40)

	Introduction
	Finite Difference Approximations
	Implementation of Differential Operators
	Boundary Conditions
	Summary of the Course

