Introduction

Michael
Hanke

Domains: Move, Copy & Co

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

© Michael Hanke 2018 1 (20)

Introduction

Michael
Hanke
Introduction

The Domain
Class

The Move @ Introduction

Constructor

(C++11)

Accessing
Points in a

Grid @ The Domain Class
Summary
© The Move Constructor (C++11)

@ Accessing Points in a Grid

@ Summary

© Michael Hanke 2018

Outline

2 (20)

Introduction
Mickasl What Do We Already Have

Introduction

e A class hierarchy for constructing curves in 2D

e Tools for constructing classes for new curves

class Curvebase {
public:
Curvebase(double a = 0.0, double b = 1.0) : a_(a),
double x(double s); // Coordinates in arc length
double y(double s);
virtual ~Curvebase();

© Michael Hanke 2018 3 (20)

Introduction

Michael What Do We Want

Hanke

Introduction

A class for describing (discrete) domains — grids:

class Domain {

public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&) ;

void generate_grid (...);
// more members

private:
Curvebase *sides[4];
// more members

};

© Michael Hanke 2018

4 (20)

Introduction

Michael Wishlist: Domain

Hanke

The Domain
Class
The Domain class should be able:

To handle all four-sided domains (being topologically equivalent
to a square);

e To generate a structured grid for any given number of
discretization points in &, n-directions;

Allowing to access any grid point;
Allow for a convenient implementation of differential operators;

Routines for export and import of grids.

© Michael Hanke 2018 5 (20)

Introduction

Michacl Domain Class Skeleton
e Do class Domain {
Class public:
Domain(Curvebase&, Curvebase&,
Curvebase&, Curvebase&);
Domain(const Domaink) ;
Domain& operator=(Domain&) ;
~“Domain() ;
void generate_grid (int m, int n);
// more members
private:
Curvebase *sides[4];
double *x_, *y_;
int m_, n_;
bool check_consistency();
// more members
};

Note: The default constructor is not defined!

© Michael Hanke 2018 6 (20)

Introduction

Michael
Hanke

The Domain
Class

The Constructor

Domain: :Domain(Curvebase& s1, Curvebase& s2,
Curvebase& s3, Curvebase& s4) {

sides[0] = &s1;
sides[1] = &s2;
sides[2] = &s3;

sides[3] = &s4;
if (“check_consistency())
sides[0] = sides[1] = sides[2] = sides[3] = nullptr;
m_ =n_ = 0;
X_ = y_ = nullptr;
}

Note: The object nullptr has been introduced in C++ 11. Earlier
(and in C) it is common to use the macro NULL instead.

© Michael Hanke 2018

7 (20)

Introduction

Michael
Hanke

The Domain
Class

© Michael Hanke 2018

Grid Generation

void Domain::grid_generation(int m, int n) {
if (m <=0 || n <= 0) ; // Do something meaningful
else {
if (m_ > 0) { // There exists already a grid!
delete [] x_;
delete [] y_;

- =m; n_ = n;

_ = new double[m_*n_];

_ = new double[m_*n_];

/ Fill x_[] and y_[] with values!

N< X B v
I

¥
}

Note: | use the dimensions m_*n_ instead of (m_+1)*(n_+1).

8 (20)

Introduction

Michael Destructor

Hanke

The Domain
Class

Domain: : ~Domain() {
if (m_ > 0) {
delete [1 x_;
delete [] y_;
}
}

© Michael Hanke 2018 9 (20)

Introduction

e Copy Constructor

The Domain
Class

e The default copy constructor invokes recursively the default
constructors of its members.

e Here, it would do something like:

Domain: :Domain(const Domain& d)
sides[0] = d.sides[0]; sides[1]

d.sides[1];

sides[2] = d.sides[2]; sides[3] = d.sides[3];
m_ =d.m_;
n_ =d.n_;
x_ = d.x_;
y_ =d.y_;

}

e What is wrong with this constructor?

© Michael Hanke 2018 10 (20)

Introduction

Michae Default Copy Constructor

Hanke

The Domain
Class

e Consider the function
Domain something() {
Domain d(...);
// Do something
return d;

}

e The following sequence is forbidden (and will most likely crash
your program)

Domain d = something();
d.grid_generation();

e Why? Shallow copy!

© Michael Hanke 2018 11 (20)

Introduction

Deep Copy

Michael
Hanke
Domain: :Domain(const Domain& d)
The Domain m_(d.m_), n_(d.n_), x_(nullptr), y_(nullptr) {

e sides[0] = d.sides[0]; sides[1] = d.sides[1];
sides[2] = d.sides[2]; sides[3] = d.sides[3];
if (m_ > 0) {

_ = new double[m_*n_];
y_ = new double[m_*n_];
for (int 1 = 0; i < m_*n_; i++) {
x_[i] = d.x_[i];
y_[i] = d.y_[i];
}
}

X

}

e It may be much more efficient to use memcpy instead of the for
loop!

e |t would even be much more efficient to use specialized libraries.
(Maybe, the compiler does it for you)

© Michael Hanke 2018 12 (20)

Introduction

Michecl The Copy-Assignment Operator

Hanke
Domain& Domain::operator=(const Domain& d) {

if (this != &d) { // Do not copy to itself
zr=D°m=h // copy sides!
if (m_ == d.m_ && n_ == d.n_)

for (int i = 0; i < m_*n_; i++) {
x_[i] = d.x_[il; y_[i]l = d.y_[il;
¥
else {
if (m_ > 0) {
delete [] x_; delete [] y_;
X_ = y_ = nullptr;

}
m_ =d.m_; n_ =d.n_;
if (m_ > 0) {
x_ = new double[m_*n_];
y_ = new double[m_*n_];
for (int i = 0; i < m_*n_; i++) {
x_[1] = d.x_[i]; y_[i] = d.y_[il;
}
}
}
}
return *this;

}

© Michael Hanke 2018 13 (20)

Introduction

Michael The Problem And Its Solution

Hanke

e Consider the function

The Move Domain something() {

Constructor

) Domain tmp(...);

// Do something
return tmp;

}

e What happens when calling Domain d = something();?

e A temporary object tmp will be created by a constructor.

e The return statement will execute the copy constructor since
tmp leaves scope.

e Memory for the arrays x_ and y_ will be allocated and the arrays
will be copied.

e The latter copy is unnecessary!

Way out: Move constructor.

© Michael Hanke 2018 14 (20)

Introduction

Michael References to rvalues

Hanke

The Move
Constructor

(C++11)

The references considered so far can be bound to lvalues.

For using the move idea, references to temporary objects are
needed. This is realized via references to rvalues.

An rvalue reference is defined by using “&&” instead of "&"
int i = 42;
int &r = i; // lvalue reference
int &&rr2 = i*42; // An expression is an rvalue
const int &r3 = ix42 // OK
int &r2 = i*42 // Error!

Rule: References to rvalues cannot be bound to lvalues and vice
versa.

© Michael Hanke 2018 15 (20)

Introduction

Michael The Move Contructor

Hanke

The Move
Constructor
(C++11) . .
e The signature of a move constructor is

class(class&& v) noexcept

e A move constructor uses only available resources. So usually, it
does not throw any exception. The keyword noexcept indicates
this. It allows the compiler to generate more efficient code.

e The move constructor does not destroy v. So it must leave v in
a consistent state such that the desctructor can succeed cleanly!

© Michael Hanke 2018 16 (20)

Introduction

Michael Move Constructor: Domain

Hanke

Domain: :Domain(Domain&& d) noexcept

ALEE : m_(d.m_), n_(d.n_), x_(d.x_), y_(d.y_) {
() sides[0] = d.sides[0]; sides[1] = d.sides[1];
sides[2] = d.sides[2]; sides[3] = d.sides[3];
d.m_ = 0;
d.n_ = 0;

d.x_ = nullptr;
d.y_ = nullptr;
}
A move-assignment operator can be defined analogously:

Domain& Domain::operator =(Domain&&) noexcept;

Note: When move operations are defined, the corresponding copy
operations must be defined explicitly!

© Michael Hanke 2018 17 (20)

Introduction

yched Acess of Data Points in a 2D Array

The C++ syntax allows to access array components:

array[i] [j]
e
Points in a

Grid

[1 is a usual C4++ operator! So it allows for overloading!

Point Domain::operator[](int ind) const
{ return P(x_[ind],y_[ind]l); }

The result is an rvalue! So we can write P = d[ind], but not
d[ind] = P!

For the latter, we would need something like

Point& Domain::operator[] (int ind)

e Design error! Really?

© Michael Hanke 2018 18 (20)

Introduction

Michael Index Checking

Hanke

e Up to now, we do not have index checking. If ind in d[ind] is
out of bounds, the program will most probably crash.

e Moreover, it would be convenient to allow for double indexing.

Accessing

SEHome e Solution: Overload the function call operator ():
Point Domain::operator() (int i, int j) comnst {
if @<Oo Il i>m |l j<ollj>n)A{
exit(-1);
}
int ind = i+j*m_;
return P(x_[ind],y_[ind]);
}

e Now you have (controlled) access to the rvalue d(i,j) .

© Michael Hanke 2018 19 (20)

Introduction

Michael S umma ry

Hanke

e Deep copy, move constructor

e Overloading the index operator

Summary

e What comes next:

e Templates
o STL

© Michael Hanke 2018 20 (20)

	Introduction
	The Domain Class
	The Move Constructor (C++11)
	Accessing Points in a Grid
	Summary

