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e A class hierarchy for constructing curves in 2D

e Tools for constructing classes for new curves

class Curvebase {
public:
Curvebase(double a = 0.0, double b = 1.0) : a_(a),
double x(double s); // Coordinates in arc length
double y(double s);
virtual ~Curvebase();
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A class for describing (discrete) domains — grids:

class Domain {

public:

Domain(Curvebase&, Curvebase&, Curvebase&,
Curvebase&) ;

void generate_grid (...);
// more members

private:
Curvebase *sides[4];
// more members

};

© Michael Hanke 2018

4 (20)



Introduction

Michael Wishlist: Domain

Hanke

The Domain
Class
The Domain class should be able:

To handle all four-sided domains (being topologically equivalent
to a square);

e To generate a structured grid for any given number of
discretization points in &, n-directions;

Allowing to access any grid point;
Allow for a convenient implementation of differential operators;

Routines for export and import of grids.

© Michael Hanke 2018 5 (20)



Introduction
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e Do class Domain {
Class public:
Domain(Curvebase&, Curvebase&,
Curvebase&, Curvebase&);
Domain(const Domaink) ;
Domain& operator=(Domain&) ;
~“Domain() ;
void generate_grid (int m, int n);
// more members
private:
Curvebase *sides[4];
double *x_, *y_;
int m_, n_;
bool check_consistency();
// more members
};

Note: The default constructor is not defined!
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The Constructor

Domain: :Domain(Curvebase& s1, Curvebase& s2,
Curvebase& s3, Curvebase& s4) {

sides[0] = &s1;
sides[1] = &s2;
sides[2] = &s3;

sides[3] = &s4;
if (“check_consistency())
sides[0] = sides[1] = sides[2] = sides[3] = nullptr;
m_ =n_ = 0;
X_ = y_ = nullptr;
}

Note: The object nullptr has been introduced in C++ 11. Earlier
(and in C) it is common to use the macro NULL instead.
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Grid Generation

void Domain::grid_generation(int m, int n) {
if (m <=0 || n <= 0) ; // Do something meaningful
else {
if (m_ > 0) { // There exists already a grid!
delete [] x_;
delete [] y_;

- =m; n_ = n;

_ = new double[m_*n_];

_ = new double[m_*n_];

/ Fill x_[] and y_[] with values!

N< X B v
I

¥
}

Note: | use the dimensions m_*n_ instead of (m_+1)*(n_+1).
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Domain: : ~Domain() {
if (m_ > 0) {
delete [1 x_;
delete [] y_;
}
}
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e The default copy constructor invokes recursively the default
constructors of its members.

e Here, it would do something like:

Domain: :Domain(const Domain& d)
sides[0] = d.sides[0]; sides[1]

d.sides[1];

sides[2] = d.sides[2]; sides[3] = d.sides[3];
m_ =d.m_;
n_ =d.n_;
x_ = d.x_;
y_ =d.y_;

}

e What is wrong with this constructor?
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e Consider the function
Domain something() {
Domain d(...);
// Do something
return d;

}

e The following sequence is forbidden (and will most likely crash
your program)

Domain d = something();
d.grid_generation();

e Why? Shallow copy!
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Domain: :Domain(const Domain& d)
The Domain m_(d.m_), n_(d.n_), x_(nullptr), y_(nullptr) {

e sides[0] = d.sides[0]; sides[1] = d.sides[1];
sides[2] = d.sides[2]; sides[3] = d.sides[3];
if (m_ > 0) {

_ = new double[m_*n_];
y_ = new double[m_*n_];
for (int 1 = 0; i < m_*n_; i++) {
x_[i] = d.x_[i];
y_[i] = d.y_[i];
}
}

X

}

e It may be much more efficient to use memcpy instead of the for
loop!

e |t would even be much more efficient to use specialized libraries.
(Maybe, the compiler does it for you)
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Domain& Domain::operator=(const Domain& d) {

if (this != &d) { // Do not copy to itself
zr=D°m=h // copy sides!
if (m_ == d.m_ && n_ == d.n_)

for (int i = 0; i < m_*n_; i++) {
x_[i] = d.x_[il; y_[i]l = d.y_[il;
¥
else {
if (m_ > 0) {
delete [] x_; delete [] y_;
X_ = y_ = nullptr;

}
m_ =d.m_; n_ =d.n_;
if (m_ > 0) {
x_ = new double[m_*n_];
y_ = new double[m_*n_];
for (int i = 0; i < m_*n_; i++) {
x_[1] = d.x_[i]; y_[i] = d.y_[il;
}
}
}
}
return *this;

}
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e Consider the function

The Move Domain something() {

Constructor

) Domain tmp(...);

// Do something
return tmp;

}

e What happens when calling Domain d = something();?

e A temporary object tmp will be created by a constructor.

e The return statement will execute the copy constructor since
tmp leaves scope.

e Memory for the arrays x_ and y_ will be allocated and the arrays
will be copied.

e The latter copy is unnecessary!

Way out: Move constructor.
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Constructor

(C++11)

The references considered so far can be bound to lvalues.

For using the move idea, references to temporary objects are
needed. This is realized via references to rvalues.

An rvalue reference is defined by using “&&” instead of "&"
int i = 42;
int &r = i; // lvalue reference
int &&rr2 = i*42; // An expression is an rvalue
const int &r3 = ix42 // OK
int &r2 = i*42 // Error!

Rule: References to rvalues cannot be bound to lvalues and vice
versa.
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(C++11) . .
e The signature of a move constructor is

class(class&& v) noexcept

e A move constructor uses only available resources. So usually, it
does not throw any exception. The keyword noexcept indicates
this. It allows the compiler to generate more efficient code.

e The move constructor does not destroy v. So it must leave v in
a consistent state such that the desctructor can succeed cleanly!
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Domain: :Domain(Domain&& d) noexcept

ALEE : m_(d.m_), n_(d.n_), x_(d.x_), y_(d.y_) {
() sides[0] = d.sides[0]; sides[1] = d.sides[1];
sides[2] = d.sides[2]; sides[3] = d.sides[3];
d.m_ = 0;
d.n_ = 0;

d.x_ = nullptr;
d.y_ = nullptr;
}
A move-assignment operator can be defined analogously:

Domain& Domain::operator =(Domain&&) noexcept;

Note: When move operations are defined, the corresponding copy
operations must be defined explicitly!
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The C++ syntax allows to access array components:

array[i] [j]
e
Points in a

Grid

[1 is a usual C4++ operator! So it allows for overloading!

Point Domain::operator[](int ind) const
{ return P(x_[ind],y_[ind]l); }

The result is an rvalue! So we can write P = d[ind], but not
d[ind] = P!

For the latter, we would need something like

Point& Domain::operator[] (int ind)

e Design error! Really?
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e Up to now, we do not have index checking. If ind in d[ind] is
out of bounds, the program will most probably crash.

e Moreover, it would be convenient to allow for double indexing.

Accessing

SEHome e Solution: Overload the function call operator ():
Point Domain::operator() (int i, int j) comnst {
if @<Oo Il i>m |l j<ollj>n)A{
exit(-1);
}
int ind = i+j*m_;
return P(x_[ind],y_[ind]);
}

e Now you have (controlled) access to the rvalue d(i,j) .
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e Deep copy, move constructor

e Overloading the index operator

Summary

e What comes next:

e Templates
o STL
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