
Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Classes in C++

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

c©Michael Hanke 2018 1 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Outline

1 Classes

2 Constructors and Destructors

3 Summary

c©Michael Hanke 2018 2 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

What is a Class?

• An abstract data type is a (nonempty, finite) set and the
collection of operations defined on this set.

• A C++ class is the programmatic description of a data type.
• An object is an instance of a class.

An abstract data type is a suitable model for implementing abstract
mathematical structures.

c©Michael Hanke 2018 3 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Formal Class Declaration
C++ class declaration

class identifier {
public:
// Public class members

protected:
// Protected class members

private:
// Private class members

}; // Do not forget the semicolon here!!

where identifier is the name of the class.
• The members can be basic data types, other classes or functions.
• Public members can be accessed from anywhere in the program.
• Private members can only be accessed from member functions
of the class.

• Protected members can be accessed from derived classes
additionally to member functions of the class.

c©Michael Hanke 2018 4 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Class Declaration (cont)

• Instead of class, the reserved word struct can be used. The
difference lies in the default access behavior.

• Default access behavior: class = private; struct = public.
• Convention: Names of classes start usually with a capital letter.

c©Michael Hanke 2018 5 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

A Simple Class

• The mathematical notion: Points in the two-dimensional
Cartesian plane

• The implementation of this mathematical notion should look to
the user as if it were a standard type.

• The user of the class does not need to know how the internals
look like.

• Example: The user should be able to write something like

Point P;
Point W(1.0,2.0);
Point Q = P;

c©Michael Hanke 2018 6 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

A C-Style Implementation

class Point {
public:
double x;
double y;

};

Note: The keyword class can be replaced by struct. The latter is
the way one would do it in C.

• The coordinates can be accessed via P.x and P.y using
explicitly the implementation.

• What if we instead would use polar coordinates in the
implementation? The user must rewrite his/her code!

c©Michael Hanke 2018 7 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

A C++-Style Implementation

class Point {
private: // Can be omitted here
double x;
double y;

public:
double X() { return x; } // return x coordinate
double Y() { return y; } // return y coordinate
void zero() { x = y = 0.0; } // set point to origin

};

The user can access the Cartesian coordinates via P.X() and P.Y(),
respectively.

c©Michael Hanke 2018 8 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Another Implementation

class Point {
private:
double r;
double phi;

public:
double X() { return r*std::cos(phi); }
double Y() { return r*std::sin(phi); }
void zero() { r = phi = 0.0; }

};

The user interface did not change!
• The variables r, phi are called data members of the class.
• The functions X, Y, zero are the member functions of the class.

c©Michael Hanke 2018 9 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Programming Style: Separation of
Interface and Implementation

The interface file point.hpp may look like this:

#ifndef POINT_HPP
#define POINT_HPP

class Point {
double x;
double y;

public:
double X();
double Y();
void zero();

};

#endif

c©Michael Hanke 2018 10 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Implementation

#include “point.hpp”

double Point::X() {
return x;

}
double Point::Y() {
return y;

}
void Point::zero() {
x = y = 0.0;

}

The user of the class will most probably never see the
implementation!

c©Michael Hanke 2018 11 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Efficiency Considerations: Inlining

• The principle of data hiding leads often to very many small
member functions.

• Calling a function includes an overhead compared with the
simple data member access (e.g., P.x).

• The overhead can lead to low efficiency if calls happen rather
often (inside innermost loops).

• This overhead can be avoided by function inlining.
• Note: Inlining is a hint to the compiler. The compiler can do it
or not.

• Function bodies defined in header files are inlined be default,
while functions defined in the implementation are not. (Guess
why?)

c©Michael Hanke 2018 12 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Efficiency Considerations: const

• A compiler can often optimize the code much better if it can use
additonal assumptions about the function behavior.

• One important property is if certain objects are constant.
• Example: In the definition

const int N = 10;

the variable N will never change its value. Doing so will result in
a compilation error.

• As a byproduct, the user interface may become safer.

c©Michael Hanke 2018 13 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

const And Pointers

• Consider the definition

const double *p;

• This construct indicates that the double the pointer p is pointing
to will never change its value.

• Consider instead

double *const p = &q;

• Here, the pointer p will never change its value.

c©Michael Hanke 2018 14 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Efficiency Considerations: point
Class

For efficiency, the header file should look like this:

#ifndef POINT_HPP
#define POINT_HPP
class Point {
private: // Can be omitted here
double x;
double y;

public:
double X() const { return x; }
double Y() const { return y; }
void zero() { x = y = 0.0; }

};
#endif

The keyword const indicates that the object will not change its state
when queuried for the coordinates.

c©Michael Hanke 2018 15 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Constructors

• Constructors determine what happens if an instance of a class
(an object) is created.

• Built-in data types have default constructors: E.g., a statement
int i; reserves memory for one instance of type integer.

• The initial value of an instance of a built-in type is undefined!
• A definition of the type int i = 0; invokes another type of
constructor, the so-called copy constructor.

• A definition of the kind class variable ; invokes a constructor

class::class()

as a member function of the instance variable. (the so-called
default constructor)

c©Michael Hanke 2018 16 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Constructors (cont)

• If no constructors are defined in a class, the so-called synthesized
default constructor is automatically defined by the compiler.

• The synthesized default constructor invokes recursively the
default constructors of the data members.

• As soon as at least one constructor is defined in the class, the
default constructor is not available (unless it is explicitely
required by class() = default;)

• Be careful: The synthesized default constructor might not be
what you want! (Shallow vs deep copy)

c©Michael Hanke 2018 17 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

point Class Constructors

• We want something like

Point();
Point(double xx, double yy);

• The default constructor is “do nothing but reserve memory”:

Point() {}

• The next one seems also easy:

Point(double xx, double yy) { x = xx; y = yy; }

c©Michael Hanke 2018 18 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

point Class Constructors (cont)

• A more efficient way: Use initialization lists:

Point(double xx, double yy) : x(xx), y(yy) { }

(uses the copy constructors)
• And finally: A versatile version (even replacing the default
constructor):

Point(double xx = 0.0, double yy = 0.0) :
x(xx), y(yy) { }

• Now, we can define:

Point P(3.0,5.0);
Point Q(3.0);
Point W;

but even:

Point *p; p = new Point(2.0);

c©Michael Hanke 2018 19 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Constructors: Intialization Lists

We must use the constructor initializer list to provide values for
members that are const, reference, or of class type that does not
have a default constructor.
Example:

class ConstRef {
public:
ConstRef(int ii);

private:
int i;
const int ci;
int &ri;

};

c©Michael Hanke 2018 20 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Initialization Lists (cont)

Correct
ConstRef::ConstRef(int ii): i(ii), ci(ii), ri(i) { }

Errorneous ConstRef::ConstRef(int ii) {
i = ii; // ok
ci = ii; // wrong since ci is const
ri = i; // wrong: ri was never initialized

}

c©Michael Hanke 2018 21 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

The Copy Constructor

• Aim: Initialize an instance of a class by another instance of the
same class:

Point P(3.0,5.0);
Point Q(P);
Point W = Q;

• The creation of the objects Q and W are handled by the copy
constructor.

• The copy constructor is invoked when
• objects are defined by = or class(object of that class)
• objects are passed as actual parameters for non-reference

arguments
• return object from a function that has a non-reference return

type.

• This explains why the argument must be of reference type!
(Why?)

c©Michael Hanke 2018 22 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

The Default Copy Constructor

• The default copy constructor invokes the copy constructors of all
data members.

• For built-in types, this is a simple copy.
• In our example, it is equivalent to:

Point(const Point& Q): x(Q.x), y(Q.y) { }

Note: This is not identical to

Point(const Point& Q) {x = Q.x; y = Q.y; }

Why?
• If the class manages its own dynamic memory (e.g. using new
type[n]), one must most probably define its own copy
constructor!

• Discussion: Should one define one’s own copy constructor?

c©Michael Hanke 2018 23 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Remark

• In the following, Q is constructed via the copy constructor:

Point P(3.0,5.0);
Point Q = P;

• Compare:

Point P(3.0,5.0), Q;
Q = P;

This case is handled by the copy-assignment constructor! This is
different from the previous one!

c©Michael Hanke 2018 24 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Copy Constructor: Efficiency

Consider the following ordinary (non-member) function:

const Point negative(const Point P) {
return Point(-P.X(),-P.Y());

}

• This version is very expensive, since it uses the constructor 3
times!

It’s demo time!

c©Michael Hanke 2018 25 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Efficiency (cont)

• Better:

const Point negative(const Point& P) {
return Point(-P.X(),-P.Y());

}

• Note: The return type cannot be const Point&! Why?
• The C++11 and later standards have means to avoid certain
copies of temporary objects (move and move-assignment
constructors).

c©Michael Hanke 2018 26 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

The Destructor

• Inverse operation of constructors.
• Destructors do whatever work is needed to free the resources
used by an object.

• The destructor is a member function with empty argument list
with the name of the class prefixed by a tilde:

~Point() { }

In our simple example, it is a no-op. The runtime system
releases the memory.

• In general, releasing resources must be handled very carefully in
order to avoid memory leaks etc!

c©Michael Hanke 2018 27 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Type Conversion

• What happens in the following situation?

double d = 1;

The constant “1” is int, the variable defined of type double.
• The integer constant is implicitely converted to type double
(1.0) and then assigned.

• In case of the definition

Point P = 1.0;

the constructor Point(1.0) is invoked.
• This way, the constructor includes an implicit type conversion!
• Note: Explicit type conversion (“type casting”) is included in this
mechanism:

Point P,Q;
P = static_cast<Point>(1.0); Q = (Point) 1.0;

Be careful! Avoid explicit type casting!

c©Michael Hanke 2018 28 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

static Class Members

• Any member of a class can be static.
• A static member exists only once for each class. Thus, it is not
bound to a concrete object.

• A static member function does not contain a this pointer. It
can only use static class members.

• Definition of a static member outside of a class body: Omit the
static keyword.

• Static data members must be initialized outside the class (No
constructor will be called!)

• constexpr static data members will be initialized in the class
definition.

c©Michael Hanke 2018 29 (30)

Introduction

Michael
Hanke

Classes

Constructors
and
Destructors

Summary

Summary

What we learned:
• Basic definitions of classes
• Private and public members
• Constructors and destructors
• Constructors: Efficiency considerations

• What comes next:
• Operator overloading

c©Michael Hanke 2018 30 (30)

	Classes
	Constructors and Destructors
	Summary

