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Introduction

e In Scientific Computing, efficiency with respect to memory and
execution time is an issue.

e In this lecture, we will give a very short introduction to
programming principles enhancing the performance of a code.
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Introduction Multiplication

double A[NI[N], x[N], y[NI;
// initialize A, x; set y to zero

// Version 1
for (dnt i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[i] += A[i1[j1=*x[j]1;

// Version 2: for loops exchanged
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
y[il += A1 [j]=*x[3];

Both versions are mathematically equivalent.

© Michael Hanke 2018
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e Compiler: g++ 4.8.1, -03
e Machine: My laptop (Intel 2720QM®©2.20, 6 MB level 3 cache)

What is the reason for this ‘strange” behavior?
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something like:

e Instruction fetch (IF)

e Instruction decode (ID)

o Execute (EX)

e Memory access (MEM)

e Register write back (WB)
Schematically:

Every instruction is carried out in different stages. It could be

Instr. No. Pipeline Stage
1 IF | ID | EX |MEM| WE
2 IF | ID | EX |MEM WE
3 IF [ ID | EX MEM|WE
4 IF | ID | EX [MEM
5 IF [ 1D | EX
Gs [r]2]sfal=]e[7

A real processor has around 15 — 20 stages!

© Michael Hanke 2018
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Problem
The pipeline may stall.

Reasons:

e Data dependencies: An instruction needs data which a previous
instruction did not yet deliver.

e Interrupt of the sequential execution by branches.

e The data is not available.
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Out-of-order execution (A good optimizing compiler does it, too,
during code generation)

Speculative execution

Prefetching (in connection with caches, even a good compiler
does it)

Branch prediction

e Superscalar architecture (more than one execution pipeline)

e may lead to another problem if the number of identical execution
units is less than the number of pipelines)
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gisters

?% 2| SRAM
1/3ns 1/3ns 1ns 10ns 150ns 5 000 000ns
1kB 64k 4MB 4GB 4TB
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e Memory Access (Schematic)
Introduction
Cache
e BALIESS. e
address Memory

data

CPU hit
data (a word) |

e Data are moved to memory in cache lines (architecture

Hit: Use data provided from the cache

dependent, typically 64 bytes).

e n-way associativity

© Michael Hanke 2018

No-Hit: Use data from memory and also store it in the cache
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Conclusions

Space locality: Access data located as close as possible to each
other

e Avoid indirect addressing

Time locality: ldentical data shall be accessed as short as
possible consecutively

e Reuse data if possible
Avoid branches in loops.

If there is a branch in a loop, the most often used alternative
should follow subsequently
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| Function for computing x,-k, where k =2, 3:
Low Level

Optimization void f1(int n, double x[], int k) {
for (int i = 0; i < nj; i++)
if (k == 2) x[i] = pow(x[i],2);
else x[i] = pow(x[i],3);
}
void f2(int n, double x[], int k) {
if (k == 2)
for (int i = 0; i < n; i++)
x[1] = pow(x[i]l,2);
else for (int i = 0; i < n; i++)
x[i] = pow(x[i],3);
}

f1 and £2 perform the same calculations.
Execution time of £2 is usually faster than that of £1 (heavily

compiler dependent!)
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C++ Traditional 2D arrays are stored in row-wise order,
although the language standard does not guarantee
this.

x = new double[10] [5]
allocates 10 arrays of 5 elements each.

Fortran 2D arrays are stored in column-wise order (guaranteed
by the language standard).

Storage and Efficiency

Storage order is irrelevant for efficiency. Implementation of numerical
methods must be optimized depending on order!

© Michael Hanke 2018 13 (44)
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Example: Matrix-Vector
Multiplication( revisited)

double A[NI[N], x[N], y[NI;
// initialize A, x; set y to zero

// Order: Traverse A continuously
for (dnt i = 0; i < N; i++)
for (int j = 0; j < N; j++)
y[il += A[i1[j1=*x[3];

// Order: ‘‘Jump’’ through A
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
y[il += A1 [j]=*x[3];

Both versions are mathematically equivalent.
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e Compiler: g++ 4.8.1, -03
e Machine: My laptop (Intel 2720QM®@2.20, 6 MB level 3 cache)
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Example (cont)
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e Compiler: g++ 4.8.1, ATLAS 3.10.1, icpc 14.0

e Machine: My laptop (Intel 2720QM®©2.20, 6 MB level 3 cache)

e What is going on??
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e Problem: For C = A- B, we must evaluate

N
i =Y aikby
k=0

For forming c;;, the matrices must be traversed in different order
(A row-oriented, B column-oriented)

e How to organise an efficient memory access pattern?

e Solution: Implement a block-wise algorithm which uses cache
efficiently!

e Nontrivial
e Hardware- and compiler-dependent

© Michael Hanke 2018 17 (44)
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Example (cont)

4500 T T T T T T

4000 -

3500 -

3000 -

2500 -

Mflops

2000 -

Intel MKL | |
ATLAS

Reference |

1500 -

1000 -

500 -

200 400 600 800 1000 1200 1400
Matrix dimension

e Compiler: ifort 8.1 (7), -02
e Machine: Desktop, AMD Athlon XP

1600

1800

2000
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Moral: Small mistakes can ruine performance.
Use optimized numerical libraries whenever possible!

+ good performance with little effort

+ less programming, i.e. debugging and testing

+ one can focus on essentials, e.g. PDEs instead of linear algebra
- not all libraries are good, choose carefully

must complain to certain storage formats

Recommandation: Replace X[m] [n] by x[m*n] and map X[i] [j] =
x[i+j*m] (column major)

© Michael Hanke 2018 19 (44)
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double A[N][N], a[NxN], x[N], y[N]
// Initialize A, a, x, set y to zero
// 2D access
for (i=0 ; i<n ; i++)
for (j=0 ; j<n ; j++)
y[il += ALl [j1*x[j];
// 1D access (columnwise)
idx=0;
for (j=0 ; j<mn ; j++)
for (i=0 ; i<n ; i++) {
y[i]l += alidx]*x[j];
idx++;

© Michael Hanke 2018 20 (44)
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e Compiler: g++ 4.8.3, -06
e Machine. My laptop (Intel i7-5600U @ 2.60GHz, 4 MB cache)
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De-Facto standard in Scientific Computing: (C)BLAS, LAPACK
for basic linear algebra routines (full and banded matrices)

Fast Fourier transforms: FFTW

Sparse linear algebra: PETSc (your milage may vary), Trilinos
Sparse LU etc: MUMPS, SuperLU, SuiteSparse

e Many, many, many more

Use vendor-supplied libraries whenever possible!
Examples: Intel MKL, AMD AOCL, IBM ESSL
Public domain replacements: ATLAS, OpenBLAS

© Michael Hanke 2018 22 (44)



Introduction

Michael A Simple Matrix Class

Hanke

Optimising Our aim is to construct a simple matrix class which behaves like
Expression matrices in matlab:

Evaluation
o All reasonable operations should be allowed if they are
mathematically legal.

e Matrices with one dimension equal to 1 are considered to be
vectors.

e Matrices of dimensions (1,1) are scalars.
We intend to show performance issues. Therefore:
e We will not use generic programming.

e We will not use C++'s standard libraries (in particular
containers).
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class Matrix {
int m, n; // should be size_t
Optnr=ing double *A;
Expression public:
Sttt Matrix(int m_ = 0, int n_ = 0) : m(m_), n(n_), A(nullptr) {
if (m*n > 0) {
A = new double[m*n];
std::fill(A,A+m*n,0.0);
// cblas_dcopy may be faster
}
}

“Matrix() { if (A !'= nullptr) delete [] A; }
double& operator() (int i, int j) { return A[i+j*m]l; }
const double operator()(int i, int j) comnst { return A[i+j*m]; }

};
Notes:
e We used column-major for storing the matrix.

e Copy and move constructors will be needed, too.

© Michael Hanke 2018 24 (44)
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Matrix(const Matrix& B) : m(B.m), n(B.n), A(nullptr) {
if (oxm > 0) {
A = new double[n*m];
std::copy(B.A,B.A+m*n,A);
}
}

Matrix(Matrix&& B) noexcept : m(B.m), n(B.n), A(B.A) {

B.m = 0; B.n = 0; B.A = nullptr;
}

© Michael Hanke 2018 25 (44)
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Matrix& operator=(const Matrix& B) {
if (this != &B) {
SRR if (m*n != B.m*B.n) {
Esprassioh if (A !'= nullptr) delete [] A;
if (B.A != nullptr) A = new double[B.m*B.n];
}
m = B.m; n = B.n;
std::copy(B.A,B.A+m*n,A); // 7
}
return *this;
}
Matrix& operator=(Matrix&& B) {
m = B.m; n = B.n;
if (A !'= nullptr) delete [] A;

A = B.A;
B.m = B.n = 0;
B.A = nullptr;

© Michael Hanke 2018 26 (44)
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const Matrix operator*(const Matrix& B) const {

if (n '= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

for (int i = 0; i < m; i++)

for (int j = 0; j < B.n; j++) {
tmp.A[i+j*m] = 0.0;
for (int k = 0; k < n; k++)
tmp.A[i+j*m] += A[i+k*m]=*B.A[k+j*m];

+

return tmp;

}

This implementation is extremely slow as we have seen
before!

Optimizing
Expression
Evaluation

© Michael Hanke 2018 27 (44)
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gptimi{inz #include <cblas.h>

pression

Evaluation const Matrix operator*(const Matrix& B) const {
if (n !'= B.m) error();

Matrix tmp(m,B.n);

if (tmp.A == nullptr) return tmp;

cblas_dgemm(CblasColMajor,CblasNoTrans,
CblasNoTrans,m,n,B.n,
1.0,A,m,B.A,n,0.0,tmp.A,m);

return tmp;

}

Note: The dgemm routine evaluates a much more complex expression:
C :=aAB+ BC.

© Michael Hanke 2018 28 (44)
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For the following explanations assume that we have defined an
S addition operation:
const Matrix operator+(const Matrix& B) const {
// Insert tests for correctness and memory management
Matrix tmp(m,n);
for (int i = 0; i < m*n; i++) tmp.A[i] = A[i]+B.A[i];
return tmp;

b
Note: The corresponding BLAS routine would be cblas_daxpy.

Problem: A temporary is created which is then copy-assigned to the
result.

© Michael Hanke 2018 20 (44)
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Sl e We have previously seen that a lot of copying can be avoided by
Svaluation using the move-assignment operator:
Matrix& operator=(Matrix&& A);

e In the assignment C = A+B;, this operator will not be invoked
because A is no longer const! Hence, the signature of the
addition operator must be changed:

const Matrix operator+(const Matrix& A) const;

e A temporary object will be created anyway, but the assignment
is “light-weight”.

© Michael Hanke 2018 30 (44)
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Define a member function:
Optimizing
e void add(const Matrix& B, Matrix& C) const;

Evaluation

Here, the creation of temporaries is avoided completely.

e Copy management is handed over to the user.

However, the notation becomes rather clumsy: Instead of the
elegant notation

C = A+B;

e we have
A.add(B,C);

e How can we implement M = A+B+C; etc??

© Michael Hanke 2018 31 (44)
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Evaluation e Consider M = A+B+C;
e With the definitions above, this will be compiled to:

t1 = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix tl.operator+(const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

e In order to avoid the deep copy we would need an operator
which takes temporaries as the first argument.

© Michael Hanke 2018 32 (44)



Introduction

e Operators With Temporary
Expressions

Optimizing o If the first argument is an rvalue reference, the operator cannot
xpression

Evaluation be a member of the class. So we must declare it a friend:

friend Matrix operator+(Matrix&& A, const Matrix& B);

e So a definition might be:

Matrix operator+(Matrix&& A, const Matrix& B) {
A += B; // Assumes a standard definition of +=
return std::move(A); // Invokes the move-constructor

}

e The call to the move-constructor could have been replaced by an
explicit type cast:

return static_cast<Matrix&&> A;
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Our statement M = A+B+C becomes now:

tl = A+B; // Matrix A.operator+(const Matrix& B)
t2 = t1+C; // Matrix operator+(Matrix&& tl1l, const Matrix& C)
M = t2; // Matrix& operator=(Matrix&& t2)

© Michael Hanke 2018 34 (44)
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Temporary Expressions (cont)

A very good compiler would inline the corresponding functions and
generate a code like the following:

for (int i = 0; i < m*n; i++) t1[i] = A[i]+BI[i];
for (dnt i = 0; i < m*n; i++) M[i] = t1[i]+C[i];

However, the optimal implementation would be something like this:

for (int i = 0; i < m*n; i++)
M[i] = A[i]+B[i]+C[i];

This is called loop fusion.

© Michael Hanke 2018
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Optimizing e Basic idea: Create types which encode complex expressions. In

Expression

Evaluation our example, it may be something like

Sum< Sum<Matrix, Matrix>, Matrix>

o Applying the index operator to an object of that type reduces to
an expression including all operations (in our example:
A[i1+B[il+C[i]).

e The assignment operator becomes a type cast. It traverses
through all indices.

e Note: Templates are instantiated during compile time!

e Metaprogramming

© Michael Hanke 2018 36 (44)
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This technique may lead to an efficiency comparable to
hand-coded code for vector operations.

The first implementation is the blitz++ library by Todd
Veldhuizen.

e Expression templates have very high demands on the compiler!

Cf David Vandevoorde and Nicolai M. Josuttis: C++
Templates, The Complete Guide, Pearson 2003, Chapter 18

© Michael Hanke 2018 37 (44)
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Evaluation of the expression M = A+B+C with m = 500, n = 1:
Optimizing
Expression

Evaluation Classical Operator Overloading
Expression Templates ‘ ‘

0 05 1 15 2 25
Normalized Execution Time

500

N

Machine: Intel i7 940
Compiler: g++ 4.4.1

Source: PhD Thesis Klaus Igelberger, FAU Erlangen-Niirnberg 2010
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and

ET: Libraries

blitz++: Todd Veldhuizen (The first implementation of this
idea), http://sourceforge.net/projects/blitz/

Boost uBLAS: Joerg Walter and Mathias Koch,
http://www.boost.org/ (focus not on efficiency)

Armadillo: Conrad Sanderson et al,
http://arma.sourceforge.net/

MTL4: Peter Gottschling et al,
http://www.simunova.com/de/home

Eigen3: Benoit Jacob, Gaél Guennebaud et al,
http://eigen.tuxfamily.org/index.php?title=Main_Page
blaze: Klaus Igelberger (smart ET)
https://bitbucket.org/blaze-lib/blaze

many, many more.

The functionality is usually much larger than simple linear algebra
operations.

© Michael Hanke 2018
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Example: Vector Addition

All the following examples are taken from: K. Igelberger, G. Hager, J.
Treibig, U. Riide: SIAM J Scientific Comp 34(2012), C42-C69. Pictures

taken from preprint.

Classic 8526 MFpps/s

Manual for-Loop
Plain Function Call

2 3 4 5
Normalized Execution Time

Machine:
Compiler: g++ 4.4.2
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Classic|

Manual for-Loop|

& Plain Function Call
Blitz++
Boost uBLAS|
Blaze

z

f143.3 MFiopsis:

417.4 MFiopss

416.0 MFiopsis

307.8 MFiopsis

3929 MFlopsis

4148 MFlopsis

0

1 2
Normalized Execution Time

Intel Westmere@2.93GHz, 12MB cache

10000000

N=
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Classic
Plain Function Call

1330

18400 Mifopsts:

Flopsis

2 3 4
Normalized Execution Time

dgemm: Intel MKL
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Example: Matrix Multiplication

Classic|
Plain Function Call o
Blitz++ 15503 MFiobs/s. §
Boost uBLAS L
Blaze| 1125 MFiogls
dgemm] 112sp mFiogps
0 10 20 30 0 80 90 100

40 50 60 7
Normalized Execution Time
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Classic

Manual for-Loop
Plain Function Call
Blitz++

Boost uBLAS
Blaze|

The Importance of Inlining: Vector
Addition

1363 uFiopsi

=

5 10

15 20 25
Normalized Execution Time

jpsis

30 35 40

Yellow: Complete inlining
Blue: No inlining
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Classic
Manual for-Loop

8Plain Function Call
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Blaze
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Normalized Execution Time
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Stroustrup’'s Proposal: Composite
Objects

The previous approach is well-suited for expressions like y =
Axx.

However, the expression x = Axx cannot be handled this way
because a temporary is needed.

It cannot be decided at compile time if = and y are aliased!

A different approach consists in doing the decision at execution
time: An expression is only evaluated if the assignment takes
place (lazy evaluation).

Idea: If an expression like y = A*x+y (dgemv) is to be
evaluated, the * and + operators create only a structure with
information about the operations to be performed. It is
operator=() which performs the real operation, eg by calling
cblas_dgemv.

Cf Suely Oliveira and David Steward: Writing Scientific
Software, Section 8.6

Not as flexible as expression templates.
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e Libraries, libraries, libraries

e The design and implementation of an efficient class requires a
deep understanding of hard- and software environment.

Summary

e Even if designed with efficiency in mind, careless use of C++
may lead to extremely inefficient executables.

e “90% of the computation time are spent in 10% of the code.”
Identify and optimize hotspots!

e Finally a reference: Agner Fog, Optimizing software in C++: An
optimization guide for Windows, Linux and Mac platforms.
http://www.agner.org/optimize/optimizing _cpp.pdf
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