Michael

 Hanke
Structured Grids

Michael Hanke

School of Engineering Sciences

Program construction in C++ for Scientific Computing

Introduction
Michael
Hanke

Outline

(1) Introduction
(2) Algebraic Grid Generation
(3) Node Distributions on a Line
(4) Summary

Introduction

Given

- a geometry
- a partial differential equation
- initial and boundary conditions
we need to
(1) Discretize the domain (generate a grid)
(2) Approximate the PDE on the grid (e.g., by finite elements or finite differences)
(3) Solve the discretized pde

Aim: Develop C++ features when implementing a class for so-called structured grids.

Different Types of Grids

Grid

Subdivision of domain into small cells or a finite set of points intended for approximating PDEs by algebraic equations

Structure

- Unstructured grids
- Structured grids
- Cartesian
- Boundary-fitted

Boundary representation

- Cartesian
- Boundary-fitted
- Unstructured
- Structured

Here, we will use structured boundary-fitted grids.

Michael Hanke

A Structured Grid

Structured grids are indexed along coordinate axes:

$$
\begin{aligned}
& \xi=\text { "radius" }, \quad \eta=\text { "angle" } \\
& x=(1 / 2+\xi) \cos (\pi \eta), \quad y=(1 / 2+\xi) \sin (\pi \eta)
\end{aligned}
$$

Note: The stright lines in the right plot are an artifact from matlab.

Unstructured Grids

+ Generality
- Handles complex geometries
- "Straightforward" generation and refinement
- Inefficiency
- Indirect addressing (inefficient cache usage, many dereferences)
- Parallelization difficult

Michael Hanke

Unstructured Grids (cont)

Example implementation:

$$
\begin{array}{ll}
\text { double } x[\mathrm{n}], \mathrm{y}[\mathrm{n}] ; & \text { // Node coordinates } \\
\text { int triang }[\mathrm{m}][3] ; & \text { // Nodes in triangles }
\end{array}
$$

Coordinates must be accessed via

$$
\mathrm{x}[\operatorname{triang}[\mathrm{i}][0]], \mathrm{y}[\operatorname{triang}[\mathrm{i}][0]]
$$

Alternatively:

```
Point P[n]; // Node coordinates
int triang[m] [3];
```

Access:
P[triang[i][j]]

General Considerations

Grid generation

- Should the grid be used once or several times?
- Many grid points gives better accuracy at expense of increased computation time.
- How to distribute grid points: resolve geometry or solution? Both?

Grid properties

- Orthogonality - a "skewed" grid has larger coefficient in truncation error
- Grid size variation - numerical diffusion and stability restrictions in numerical schemes

Multi Block Grids

Divide the domain into blocks when a mapping from the unit square (cube) cannot be found.

- Blocks can be overlapping instead of adjacent (eg, NURBS)
- Nodes on common edges may be different
- Division usually done by hand or "semi-automatically"

Generating a Single Grid

We consider boundary-fitted structured grids, only. Methods:

- Explicit methods
- Analytical transformations
- Algebraic grid generation (transfinite interpolation)
- Implicit methods: The transformation is implicitely determined, often by PDEs.
- Elliptic grid generation
- Variational grid generation
- Hyperbolic and parabolic grid generation

Approach:
(1) Divide domain into blocks
(2) Generate grid on edges
(3) Generate grid on domain (2D) or sides (3D)
4. Generate grid on volume (3D)

Algebraic Grid Generation

- We consider domains $\Omega \subset \mathbb{R}^{2}$ which can be naturally mapped onto the unit square.
- More precisely, we assume $(\xi, \eta) \in[0,1]^{2} \subset \mathbb{R}^{2}$.
- Moreover, we assume that a one-to-one mapping Φ from the boundary of the unit square onto the boundary of Ω is known.
Aim: Extend Φ to a (smooth) one-to-one mapping $\Phi:[0,1]^{2} \rightarrow \Omega$.

Basic Idea

- Assume that the mapping Φ as described above is available.
- For given m, n, a uniform grid on $[0,1]^{2}$ can be defined by:

$$
\begin{array}{ll}
\xi_{i}=i h_{1}, & h_{1}=1 / m, \quad i=0, \ldots, m \\
\eta_{j}=j h_{2}, & h_{2}=1 / n, \quad j=0, \ldots, n
\end{array}
$$

- A strucured grid on Ω can then simply be obtained via

$$
x_{i j}=\Phi_{x}\left(\xi_{i}, \eta_{j}\right), \quad y_{i j}=\Phi_{y}\left(\xi_{i}, \eta_{j}\right), \quad i=0, \ldots, m, j=0, \ldots, n
$$

- How to get Φ ?

Michael Hanke

Interpolation Construction

- Assume that we have two strictly monotone functions φ_{0}, φ_{1} with the properties

$$
\begin{array}{ll}
\varphi_{0}(0)=1, & \varphi_{0}(1)=0 \\
\varphi_{1}(0)=0, & \varphi_{1}(1)=1 .
\end{array}
$$

- Then, an interpolation between two points $x, y \in \mathbb{R}^{2}$ can be be defined by

$$
f(s)=\varphi_{0}(s) x+\varphi_{1}(s) y .
$$

- Example: $\varphi_{0}(s)=1-s, \varphi_{1}(s)=s$. (linear interpolation)

Transfinite Grid Generation

- Application of this interpolation in both ξ-directions provides us with

$$
\begin{aligned}
x(\xi, \eta)= & \varphi_{0}(\xi) x(0, \eta)+\varphi_{1}(\xi) x(1, \eta)+\varphi_{0}(\eta) x(\xi, 0)+ \\
& \varphi_{1}(\eta) x(\xi, 1)-\varphi_{0}(\xi) \varphi_{0}(\eta) \times(0,0)- \\
& \varphi_{1}(\xi) \varphi_{0}(\eta) x(1,0)-\varphi_{0}(\xi) \varphi_{1}(\eta) x(0,1)- \\
& \varphi_{1}(\xi) \varphi_{1}(\eta) x(1,1)
\end{aligned}
$$

- The subtractions take care of the domain corners.
- This procedure can be generalized to have different kind of interpolations in the ξ and η directions.

Introduction

Michael Hanke

Introduction

Algebraic Grid Generation

Node

Distributions on a Line

A Simpe Example

The upper figure shows a grid generated by algebraic grid generation while the second one contains an enhancement by an elliptic process.

Introduction

Michael
Hanke

Introduction

Algebraic Grid

 Generation
Node

 on a Line

A Final Example

Michael Hanke

Introduction

 Generation

Node

Distributions on a Line

Problem: Propagating Boundary
Discontinuity

Introduction

Michael

 Hanke
Problem: Non-Convex Domains

Node Distribution

- In the examples above, we have started with a uniform discretization (with respect to the arc length parameter $s \in[0,1])$ at the boundaries.
- In case of highly non-uniform solutions (e.g., with boundary layers), it might be wise to use a nonuniform distribution in order to keep the grid small.
- Idea:
- Let us be given a uniform distribution with respect to an artificial parameter $\sigma \in[0,1]$.
- The artificial parameter is then mapped analytically to $s \in[0,1]$: $s=T(\sigma)$.
- This provides the nodes $s_{i}=T\left(\sigma_{i}\right)$ with respect to the arc length.
For this to work, $T:[0,1] \rightarrow[0,1]$ must be strictly monotone, continuous and $T(0)=0, T(1)=1$.

Michael Hanke

Node Distribution (cont)

- T is often chosen according to the principle of truncation error equidistribution.
- Example: Hyperbolic tangent stretching

$$
T(\sigma)=1+\frac{\tanh \delta(\sigma-1)}{\tanh \delta}
$$

$$
\begin{aligned}
& \hline- \text { Equidistant } \\
& -\quad \delta=2.0 \\
& -\quad \delta=5.0
\end{aligned}
$$

Summary

- Principles of structured grid generation
- Implications on computational efficiency
- Algebraic grid generation
- Nonuniform grids
- What comes next:
- Inheritance: How to implement classes for structured grids

