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Introduction

Given
• a geometry
• a partial differential equation
• initial and boundary conditions

we need to
1 Discretize the domain (generate a grid)
2 Approximate the PDE on the grid (e.g., by finite elements or

finite differences)
3 Solve the discretized pde

Aim: Develop C++ features when implementing a class for so-called
structured grids.
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Different Types of Grids

Grid
Subdivision of domain into small cells or a finite set of points
intended for approximating PDEs by algebraic equations
Structure
• Unstructured grids
• Structured grids

• Cartesian
• Boundary-fitted

Boundary representation
• Cartesian
• Boundary-fitted

• Unstructured
• Structured

Here, we will use structured boundary-fitted grids.
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A Structured Grid
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Structured grids are indexed along coordinate axes:

ξ = "radius", η = "angle"
x = (1/2 + ξ) cos(πη), y = (1/2 + ξ) sin(πη)

Note: The stright lines in the right plot are an artifact from matlab.
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Unstructured Grids

+ Generality

• Handles complex geometries
• “Straightforward” generation and refinement

- Inefficiency

• Indirect addressing (inefficient cache usage, many
dereferences)

• Parallelization difficult
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Unstructured Grids (cont)

Example implementation:

double x[n], y[n]; // Node coordinates
int triang[m][3]; // Nodes in triangles

Coordinates must be accessed via

x[triang[i][0]], y[triang[i][0]]

Alternatively:

Point P[n]; // Node coordinates
int triang[m][3];

Access:

P[triang[i][j]]
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General Considerations

Grid generation
• Should the grid be used once or several times?
• Many grid points gives better accuracy at expense of increased
computation time.

• How to distribute grid points: resolve geometry or solution?
Both?

Grid properties
• Orthogonality – a “skewed” grid has larger coefficient in
truncation error

• Grid size variation – numerical diffusion and stability restrictions
in numerical schemes

c©Michael Hanke 2018 8 (22)



Introduction

Michael
Hanke

Introduction

Algebraic Grid
Generation

Node
Distributions
on a Line

Summary

Multi Block Grids

Divide the domain into blocks when a mapping from the unit square
(cube) cannot be found.
• Blocks can be overlapping instead of adjacent (eg, NURBS)
• Nodes on common edges may be different
• Division usually done by hand or “semi-automatically”
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Generating a Single Grid
We consider boundary-fitted structured grids, only.
Methods:
• Explicit methods

• Analytical transformations
• Algebraic grid generation (transfinite interpolation)

• Implicit methods: The transformation is implicitely determined,
often by PDEs.

• Elliptic grid generation
• Variational grid generation
• Hyperbolic and parabolic grid generation

Approach:
1 Divide domain into blocks
2 Generate grid on edges
3 Generate grid on domain (2D) or sides (3D)
4 Generate grid on volume (3D)
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Algebraic Grid Generation

• We consider domains Ω ⊂ R2 which can be naturally mapped
onto the unit square.

• More precisely, we assume (ξ, η) ∈ [0, 1]2 ⊂ R2.
• Moreover, we assume that a one-to-one mapping Φ from the
boundary of the unit square onto the boundary of Ω is known.

Aim: Extend Φ to a (smooth) one-to-one mapping Φ : [0, 1]2 → Ω.
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Basic Idea

• Assume that the mapping Φ as described above is available.
• For given m, n, a uniform grid on [0, 1]2 can be defined by:

ξi = ih1, h1 = 1/m, i = 0, . . . ,m,
ηj = jh2, h2 = 1/n, j = 0, . . . , n.

• A strucured grid on Ω can then simply be obtained via

xij = Φx(ξi , ηj), yij = Φy (ξi , ηj), i = 0, . . . ,m, j = 0, . . . , n.

• How to get Φ?
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Interpolation Construction

• Assume that we have two strictly monotone functions ϕ0, ϕ1
with the properties

ϕ0(0) = 1, ϕ0(1) = 0,
ϕ1(0) = 0, ϕ1(1) = 1.

• Then, an interpolation between two points x , y ∈ R2 can be be
defined by

f (s) = ϕ0(s)x + ϕ1(s)y .

• Example: ϕ0(s) = 1− s, ϕ1(s) = s. (linear interpolation)
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Transfinite Grid Generation

• Application of this interpolation in both ξ-directions provides us
with

x(ξ, η) = ϕ0(ξ)x(0, η) + ϕ1(ξ)x(1, η) + ϕ0(η)x(ξ, 0)+

ϕ1(η)x(ξ, 1)− ϕ0(ξ)ϕ0(η)x(0, 0)−
ϕ1(ξ)ϕ0(η)x(1, 0)− ϕ0(ξ)ϕ1(η)x(0, 1)−
ϕ1(ξ)ϕ1(η)x(1, 1)

• The subtractions take care of the domain corners.
• This procedure can be generalized to have different kind of
interpolations in the ξ and η directions.

c©Michael Hanke 2018 14 (22)



Introduction

Michael
Hanke

Introduction

Algebraic Grid
Generation

Node
Distributions
on a Line

Summary

A Simpe Example
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Example: Domain With a Hole
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The upper figure shows a grid generated by algebraic grid generation
while the second one contains an enhancement by an elliptic process.
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A Final Example
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Problem: Propagating Boundary
Discontinuity
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Problem: Non-Convex Domains
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Node Distribution

• In the examples above, we have started with a uniform
discretization (with respect to the arc length parameter
s ∈ [0, 1]) at the boundaries.

• In case of highly non-uniform solutions (e.g., with boundary
layers), it might be wise to use a nonuniform distribution in
order to keep the grid small.

• Idea:
• Let us be given a uniform distribution with respect to an

artificial parameter σ ∈ [0, 1].
• The artificial parameter is then mapped analytically to s ∈ [0, 1]:

s = T (σ).
• This provides the nodes si = T (σi ) with respect to the arc

length.
For this to work, T : [0, 1]→ [0, 1] must be strictly monotone,
continuous and T (0) = 0,T (1) = 1.
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Node Distribution (cont)

• T is often chosen according to the principle of truncation error
equidistribution.

• Example: Hyperbolic tangent stretching

T (σ) = 1 +
tanh δ(σ − 1)

tanh δ

Equidistant   
δ = 2.0  
δ = 5.0  
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Summary

• Principles of structured grid generation
• Implications on computational efficiency
• Algebraic grid generation
• Nonuniform grids

• What comes next:
• Inheritance: How to implement classes for structured grids
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