
Lecture notes in numerical linear algebra
Iterative methods for sparse eigenvalue problems

x1 Iterative methods for large sparse eigen-
value problems

The eigenvalue problem is one of the fundamental problems in science.
We wish to compute pairs λ ∈ C and x ∈ Cn such that

Ax = λx, (1.1)

and A ∈ Rn×n. The eigenvector is in this block assumed to be normal-
ized as ∥x∥ = 1, with Euclidean norm such that ∥x∥2 = xHx = 1.

x1.1 Basic methods

1.1.1 Computing eigenvalues from eigenvectors

Before diving into the algorithms for eigenvalue problems, we will
treat an easier problem.
Problem: Suppose x ∈ Cn is an approximation of an eigenvector, com-
pute an associated eigenvalue.

Assume for the moment an idealized situation where x is exactly
an eigenvector. This means that (1.1) is satisfied, and we can multiply
the equation from the left with xH :

xH Ax = λxHx,

such that

λ = xH Ax
xHx

This quotient can be used also if x is not an eigenvector and is usually
referred to as the Rayleigh quotient.

For symmetric matrices, there are ad-
ditional interpretations of the Rayleigh
quotient. Given an approximate eigen-
vector x, it minimizes Ax − µx in the Eu-
clidean norm: One can show that

argmin
µ∈R

∥µx − Ax∥ =
xH Ax
xH x

Definition 1.1.1 (Rayleigh quotient). The quotient defined by

r(x) ∶= xH Ax
xHx

is referred to as the Rayleigh quotient.
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The Rayleigh quotient will in general only give you an approxima-
tion of the eigenvalue. The propagation of the approximation error can
also be precisely described if x is sufficiently close to an eigenvector.
More precisely, if we suppose x ∈ Cn is an eigenvector corresponding
to an eigenvalue λ, we have that

r(x + εy) = λ +O(ε). (1.2)

In words, the error in the eigenvalue from the Rayleigh quotient is
essentially of the order of magnitude of the error in the eigenvector.
In the following this is made more concrete with an example and a
theorem describing the accuracy. If A is symmetric (or hermitian) we

Note thatO(ε2) is better thanO(ε) since
we consider small ε.have

r(x + εy) = λ +O(ε2). (1.3)

Rayleigh quotient

Consider the two matrices

A1 = [2 5
0 3

] and A2 = [2 0
0 3

] .

Both matrices have an eigenvector x = [ 1
0 ] with eigenvalue λ = 2, but

A2 is symmetric. The example code below illustrates that the Rayleigh
quotient is much closer to the eigenvalue for the symmetric matrix A2.

>> A1=[2 0;0 3];

>> A2=[2 5;0 3];

>> x=[1;0];

>> y=[1;1]; e=1e-4 % small perturbation

>> z=x+e*y;

>> z’*A1*z/(z’*z)

ans =

2.000499959998002

>> z’*A2*z/(z’*z)

ans =

2.000000009998000

◯

Note that if (λ, x) is an eigenpair of A
and A is symmetric we have that AT x −
λx = 0 whose transpose is xT A−λxT = 0.
Therefore, by Theorem 1.1.2 the accuracy
is quadratic in ε for symmetric matrices.

Theorem 1.1.2 (Accuracy of the Rayleigh quotient). Suppose (λ, x) is an
eigenpair of A with ∥x∥ = 1. Let v = x + ε∆ where ε ∈ R and ∥∆∥ = 1. Then,
for sufficiently small ε

r(v) − λ =
⎧⎪⎪⎨⎪⎪⎩

O(ε2) if xT A = λxT

O(ε) otherwise.
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Proof. First expand the Rayleigh quotient with the approximation

r(v) = (x + ε∆)T A(x + ε∆)
(x + ε∆)T(x + ε∆) = 1

xTx + εα
(xT Ax + ε(β + εγ))

where α = xT∆ + ∆Tx + ε∆T∆, β = xT A∆ + ∆T Ax and γ = ∆T A∆. We
will now use the Taylor expansion of functions of the form

1
1+ z

= 1− z + z2 −⋯.

By selection z = εα and noting that xTx = 1 by assumption and using
that Ax − λx = 0, we conclude that

r(v) = λ + ε(xT A − λxT) +O(ε2)

which reduces to the statement of the theorem.

1.1.2 Basic eigenvalue methods

The Rayleigh quotient provides a procedure to numerically compute
an eigenvalue approximation given an eigenvector approximation. Com-
puting the eigenvector can be done in many ways. We first consider
three basic algorithms.

Read about these methods in TB pages
202-209.• Power method (power iteration) summarized in Algorithm 1

• Inverse iteration summarized in Algorithm 2

• Rayleigh quotient iteration summarized in Algorithm 3

1.1.3 Power method

The power method (or sometimes power iteration), is our first eigen-
value method. It consists of starting vector a vector v0, we multiply
this vector with A, scale the resulting vector and repeat the process:

vk+1 = αk Avk, k = 0, . . . .

The scaling factor αk is used to prevent the iteration values vk to be-
An important property of the power
method is that the only way we need
to access the matrix A is in combination
with a multiplication with a vector Ax: a
so-called matrix-vector product. In many
scientific applications, the matrix A may
be so large that it is not possible to store
it explicitly, but the matrix-vector prod-
uct may still be available.

come very small or very large which makes them more difficult to
represent/store. (More precisely, we want to avoid overflow or un-
derflow in the IEEE floating point arithmetic.) Typically the scaling is
selected such that ∥vk+1∥ = 1, which can be achieved by setting

αk =
1

∥Avk∥
.

The operations can be re-ordered such it only requires one matrix vec-
tor product per iteration as in Algorithm 1.
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If we consider vk as our eigenvector approximation, we can use
the Rayleigh quotient to extract an eigenvalue approximation. Since
∥vk∥2

2 = vT
k vk = 1, the Rayleigh quotient reduces to

λ̃k =
vT

k Avk

vT
k vk

= vT
k Avk.

Input: A starting vector v with ∥v∥ = 1
Output: Eigenpair approximation (w, λ̃)
for n = 1, 2, . . . do

w = Av
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 1: Power method (Power iteration).

1.1.4 Convergence of the power method

It turns out that the iterates vk generated by the power method do
indeed in general converge to an eigenvector. Under certain (not very
restrictive) conditions one can show that

λ̃k = λ1 +O( ∣λ2∣k
∣λ1∣k

).

where we have ordered the eigenvalues as ∣λ1∣ ≥ ∣λ2∣ ≥ ⋯.

Theorem 1.1.3. Consider a matrix A ∈ Cn×n, and assume its largest eigen-
value is distinct in modulus such that

∣λ1∣ > ∣λ2∣ ≥ ∣λ3∣⋯ ≥ ∣λn∣.

If A = XDX−1 is a Jordan decomposition of A with D(1, 1) = λ. Suppose
the power method is initiated such that the first element of X−1v0 is non-zero.
Then,

∣λ̃k − λ1∣ = O( ∣λ2∣k
∣λ1∣k

).

See proof during lecture.
Unlike the power method, inverse iter-
ation does not involve a matrix vector
product with A per iteration, but one so-
lution to the linear system, (A − µI)−1v.
This operation is normally called a lin-
ear solve. A linear solve is in general
much more computationally expensive
than one matrix vector product.

1.1.5 Inverse iteration

The next algorithm we consider is essentially a combination of what
we know for the power method, and the observation that the eigenval-
ues of the matrix A and the matrix

B = (A − µI)−1

are related by a simple relation.
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If we denote λi(A), λi(B) the eigenvalues of A and B respectively,
the eigenvalues are related by

λi(B) = 1
λi(A) − µ

(1.4)

The eigenvectors remain unchanged.
The transformation (1.4) has the useful property that the eigenval-

ues close to µ will be transformed to large eigenvalues. Since inverse
iteration converges to the eigenvector corresponding to the largest
eigenvalue in general, we obtain with the application of the power
method to B, which converges to the eigenvector corresponding to an
eigenvalue of A, closest to µ. The eigenvector extraction can be done
with the Rayleigh quotient of A, rather than B, as shown in Algo-
rithm 2.

An interpretation of (1.5): The conver-
gence factor of inverse iteration is pro-
portional to the distance between the
shift and the closest eigenvalue. In for-
mulas convergence to the eigenvector v
is

∥vk+1 − v∥ = O(∣λJ − µ∣∥vk − v∥)

The convergence follows from the fact that the method is equivalent
to the power method applied to the matrix B:

λ̃k = λ1 +O(
∣λJ − µ∣k

∣λK − µ∣k
) (1.5)

where λJ is the eigenvalue of A that is closest to µ and λK is the
eigenvalue of A second closest to µ.

Input: A starting vector v with ∥v∥ = 1 and shift µ

Output: Eigenpair approximation (w, λ̃)
for n = 1, 2, . . . do

Solve linear system (A − µI)w = v
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 2: Inverse iteration

1.1.6 Rayleigh quotient iteration

For the final basic algorithm, we use a combination of previous ideas.
We can set µ in inverse iteration as the Rayleigh quotient. This implies
that when the eigenvector is a good approximation, the corresponding
eigenvalue of B = (A − µI)−1 will be a very large value and therefore
converge faster than constant µ.

The relationship between (1.5) and (1.6)
is consequence of linear convergence. A
method which converges linearly with
convergence factor α can be described in
two equivalent ways

• vk − v = O(αk)

• vk+1 − v = O(α∣vk − v∣)

The theoretical convergence of Rayleigh quotient iteration can also
be determined by combining results above. In this setting, we will sim-
plify the inverse iteration convergence theory by noting that one step
essentially multiplies the previous error with the convergence factor
which is λ − µ:

vk+1 − v = O(∥vk − v∥∣λ − µ∣). (1.6)
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Formally, this can be derived from (1.5). Suppose now that we initiate
Rayleigh quotient iteration with error ε:

∥vk − v∥ = ε

We compute the eigenvalue approximation with the Rayleigh quotient.
Note that the Rayleigh qoutient itera-
tion can also be used for non-symmetric
matrices, although it is sometimes pre-
sented only as a method for symmetric
matrices.

The error of the Rayleigh quotient is given by Theorem 1.1.2. Therefore
here we have

λk − λ = O(∥vk − v∥p) = O(εp).

Subsequently, the next eigenvector approximation is computed with
inverse iteration whose error is propagated as (1.6):

vk+1 − v = O(∥vk − v∥∣λ − λk∣) = O(εp+1) =
⎧⎪⎪⎨⎪⎪⎩

O(ε3) if xT A = λxT

O(ε2) otherwise.

In the symmetric case, the error has reduced from ε to ε3, and the
method has cubic convergence for symmetric matrices.

However, in contrast to inverse iteration and the power method,
the convergence theory does not determine to which eigenvalue the
method converges; it highly depends on the starting vector.

Input: A starting vector v with ∥v∥ = 1 and starting eigenvalue µ

Output: Eigenpair approximation (w, λ̃)
Set λ̃ = µ

for n = 1, 2, . . . do
Solve linear system (A − λ̃I)w = v
v = w/∥w∥
λ̃ = vT Av

end

Algorithm 3: Rayleigh Quotient Iteration

x1.2 Orthogonal matrices and orthogonalizing vectors

The use of decompositions has been se-
lected as one of the most influential
concepts in algorithms in the 20th cen-
tury: https://www.siam.org/pdf/news/

637.pdf In this course we also cover
other algorithms in the list of important
algorithms.

In basic linear algebra, we learn that two vectors x, y ∈ Rn are orthogo-
nal when yTx = 0. The concept of orthogonality, and its generalization
to matrices is very important in this course. We will use it mostly in
different factorizations and decompositions of matrices.
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1.2.1 Gram-Schmidt procedures

You have normally learned about the
Gram-Schmidt procedure in basic linear
algebra courses. We repeat it in a slightly
different notation than normal (using or-
thogonal matrices). It turns out that
the classical Gram-Schmidt is not always
satisfactory.

The Gram-Schmidt procedure is often explained as a procedure to
orthogonalize vectors, meaning that given vectors stored in a matrix
F = [ f1, . . . , fm] ∈ Rn×m with n ≥ m we try to determine q1, . . . , qn such
that q1, . . . , qn are orthonormal and

span( f1, . . . , fm) = span(q1, . . . , qm).

Such vectors q1, . . . , qn exist if f1, . . . , fm are linearly independent vec-
In numerical linear algebra, the Gram-
Schmidt procedure directly derived
from Lemma 1.2.1 is typically called the
classical Gram-Schmidt procedure in or-
der to distinguish it from variants we
discuss later.

tors. Note that the matrix Q = [q1, . . . , qm] ∈ Rn×m is orthogonal in the
sense of definition of orthogonal matrices (see background.pdf).

The Gram-Schmidt procedure can be directly derived by inductively
applying the following result.

Lemma 1.2.1. Suppose Q = [q1, . . . , qm] ∈ Rn×m is an orthogonal matrix
and suppose b /∈ span(q1, . . . , qm). Let

The vector h ∈ Rn is typically referred to
as the Gram-Schmidt coefficients.

h = QTb

and
z = b −Qh = (I −QQT)b. (1.7)

Let β = ∥z∥ and define

qm+1 ∶=
z
β

(1.8)

Then,

(a) the matrix [q1, . . . , qm+1] is an orthogonal matrix;

(b) b = h1q1 +⋯+ hmqm + βqm+1; and

(c) span(q1, . . . , qm+1) = span(q1, . . . , qm, b).

Proof. Proof of (b): This is a direct consequence of (1.7) and (1.8). Proof
of (a): Note that

[q1, . . . , qm+1]T[q1, . . . , qm+1] = [Q, qm+1]T[Q, qm+1] = [ QTQ QTqm+1

qT
m+1Q qT

m+1qm+1
]

The conclusion (a) follows from the fact that QTQ = I,

QTqm+1 = QT(I −QQT)b = 0

and qT
m+1qm+1 = 1.

Proof of (c): In this course we will several times use the general prop-
erty that if two rectangular matrices W ∈ Rn×m and V ∈ Rn×m are
related by

W = VP (1.9)
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for some non-singular matrix P ∈ Rm×m, then then span(W) = span(V).
If we select P as

P = [I h
0 ∥z∥]

then (1.9) is satisfied with V = [Q, qm+1] and W = [Q, b].

Classical Gram-Schmidt example

>> Q=(1/sqrt(2))*[1 -1; 1 1; 0 0; 0 0];

>> Q’*Q % Check if Q is orthogonal

ans =

1.0000 0

0 1.0000

>> b=randn(4,1);

>> h=Q’*b; % Compute Gram-Schmidt coefficients

>> z=b-Q*h; % Compute "orthogonal complement"

>> beta=norm(z);

>> q_new=z/beta;

>> Q_new=[Q,q_new]; % Construct new Q-matrix

>> Q_new’*Q_new % Check that Q_new is orthogonal

ans =

1.0000 0 0

0 1.0000 0

0 0 1.0000

>> norm(Q_new*[eye(2), h; zeros(1,2), norm(z)]-[Q,b])

>> P=[eye(2), h; zeros(1,2), beta];

>> norm(Q_new*P-[Q,b]) % Check that span(Q_new)=span([Q,b])

ans =

1.1444e-16

◯

Although the above example suggests that classical Gram-Schmidt
works, it will in general not be satisfactory in our context. It turns
out that the classical Gram-Schmidt is very sensitive to round-off er-
rors in certain situations.

In practice, we have round-off errors
in every floating point operation and
a complete round-off error analysis is
quite cumbersome. In our simplified
analysis we assume that no error is in-
truduced in the computation of z and
q̃m+1. In particular, no additional round-
off error is introduced in (1.19) and
(1.20).

A detailed analysis of the influence of the round-off errors can be
found in (appendix) Section 1.7 from which extract one conclusion. If
the vector to be orthogonalized is almost in the subspace, we are likely
to obtain a large error. Suppose b = q+ δe where q ∈ span(Q) (meaning
there q = Qd) and e ⊥ Q and ∥e∥ = 1, for a small δ. Then, the round-off
error is

∣ε∣
∣δ∣ ∥Qd∥ +O(ε2).

Lecture notes - Elias Jarlebring - Autumn 2021

8

version:2021-11-08, Elias Jarlebring - copyright 2015-2021



Lecture notes in numerical linear algebra
Iterative methods for sparse eigenvalue problems

which suggests that the round-off error is proportional to ∣ε∣/∣δ∣, and
can be very large if δ is very small.

Conclusion of error analysis of classical Gram-Schmidt
method. The Gram-Schmidt procedure is likely to have a
large round-off error if the vector b almost lies in the subspace
span(Q).

Modified Gram-Schmidt

In this course we consider two variations of Gram-Schmidt which aim
to improve the floating-point arithmetic problems described above.

The modified Gram-Schmidt procedure
is equivalent to the classical Gram-
Schmidt procedure in exact arithmetic,
but different floating-point arithmetic.

We now derive the algorithm called the modified Gram-Schmidt proce-
dure from the classical Gram-Schmidt procedure. For theoretical pur-
poses we express the classical Gram-Schmidt in for-loops:

for i=1:m

h(i)=Q(:,i)’*b;

end

z=b;

for i=1:m

z=z-h(i)*Q(:,i)

end

Although modified Gram-Schmidt
yields a different result in floating point
arithmetic, it is not always clear that the
result is better. In fact, theoretical un-
derstanding for this is still disputed by
some scientists. You will investigate this
in practice by for a specific situation in
the homeworks.

Note that at iteration i of the second loop, we only need h(i) computed
at the ith iteration the first loop such that we can merge the two loops:

z=b;

for i=1:m

h(i)=Q(:,i)’*b;

z=z-h(i)*Q(:,i);

end

beta=norm(z);

Caution regarding terminology: In this
course we consider Q ∈ Rn×m as an or-
thogonal matrix and want to orthogonal-
ize b which result in algorithms above.
In some literature (such as TB) Gram-
Schmidt procedures are described for
orthogonalizing an entire matrix A ∈
Rn×(m+1).

In the first step inside the for-loop, the vector z can be explicitly ex-
pressed as:

• Iteration i = 1: z = b

• Iteration i = 2: z = b − h1q1

• ⋮

• Iteration i = m: z = b − h1q1 −⋯− hmqm−1

Now recall that the vectors q1, . . . , qm are assumed to be orthogonal.
The following identies can be directly identified.

• Iteration i = 1: qT
i z = qT

i b
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• Iteration i = 2: qT
i z = qT

2 (b − h1q1) = qT
2 b − h1qT

2 q1 = qT
i b

• ⋮

• Iteration i = m: qT
i z = qT

mb − h1qT
mq1 −⋯− hmqT

mqm−1 = qT
mb = qT

i b

Note that for every iteration we have qT
i z = qT

i b. Therefore, we can
replace Q(:,i)’*b with Q(:,i)’*z in the for-loop. This is what we call
the modified Gram-Schmidt method.

z=b;

for i=1:m

h(i)=Q(:,i)’*z;

z=z-h(i)*Q(:,i)

end

Double Gram-Schmidt

The next approach to improve the classical Gram-Schmidt procedure is
very naive. Since we know that round-off errors will make the vector
z = b − Qh to not be orthogonal in practice, we can try to make it
orthogonal by applying classical Gram-Schmidt again. This is what
is called repeated Gram-Schmidt, or the special case double Gram-
Schmidt.

>> h=Q’*b;

>> z=b-Q*h;

>> g=Q’*z;

>> z=z-Q*g

>> h=h+g;

>> beta=norm(z);

>> z=z/norm(z);

x1.3 Krylov methods

The power method was the basis of both inverse iteration and Rayleigh
quotient iteration. These algorithms can be used to compute one eigen-
vector given an initial guess. In order to compute several eigenvalues
we now extend the power method in a different way. We consider the
space spanned by the iterates of the power method.

Definition 1.3.1 (Krylov subspace). The span of the iterates of the power
method is called a Krylov subspace

Km(A, b) ∶= span(b, Ab, A2b, . . . , Am−1b).
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Due to rounding error issues, the Krylov subspace is usually not
computed from [b, Ab, A2b, . . . , Am−1b], but rather represented with an
orthogonal basis of Km(A, b). The Arnoldi method can be seen as
method to compute an orthogonal basis of a Krylov subspace. More
precisely, the Arnoldi method is a method which generates an orthog-
onal matrix Qm ∈ Cn×m such that

AQm = Qm+1Hm

where Hm ∈ R(m+1)×m and Qm+1 = [Qm, qm+1]. The matrix Hm is a so-
called Hessenberg matrix, which means that the elements below the
first lower off-diagonal are zero:

Hm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Arnoldi method can be used to compute many quantites. In the
Arnoldi’s method for eigenvalue prob-
lems is also discussed in TB pages 251–
264.

context of eigenvalue computations, we take the eigenvalues of Hm ∈
Cm×m as eigenvalue approximations.

1.3.1 Derivation of the Arnoldi method

The Arnoldi method will be seen as method to compute the Arnoldi
factorization, by expanding Qm and Hm to form Qm+1 and Hm. The
algorithm can be derived by induction. Suppose and Arnoldi factor-
ization for m = 2 is given

AQ2 = Q3H2 (1.10)

and we wish to expand the matrices such that they satisfy

AQ3 = Q4H3. (1.11)

This is a matrix equality and if we consider column 1, 2 of this equality
we obtain exactly (1.10). Column 3 is given by multiplication with e3:

AQ3e3 = Q4H3e3.

We simplify this equation to

Aq3 = q1h1,3 + q2h2,3 + q3h3,3 + q4h4,3. (1.12)

Note that q1, q2, q3 are known since they form Q3. It remains to de-
termine h1,3, . . . , h4,3 and q4. If we denote the left-hand side of (1.12)
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by b we see that the problem to determine the coefficients is exactly
the problem we solved with Gram-Schmidt in Lemma 1.2.1. There-
fore, the Arnoldi method essentially consists of applying matrix vector
products and carrying out a Gram-Schmidt procedure.

1.3.2 The Arnoldi method

If we combine the (Gram-Schmidt) orthogonalization process with the
Krylov subspace, we obtain the algorithm called the Arnoldi method.

Input: A starting vector b
Output: Eigenpair approximation
Set q1 = b/∥b∥, H0 =empty matrix
for m = 1, 2, . . . do

Compute x = Aqm

Orthogonalize x against q1, . . . , qm by computing h ∈ Cm and
x⊥ ∈ Cn such that QTx⊥ = 0 and

x⊥ = x −Qh.

Let β = ∥x⊥∥
Let qn+1 = x⊥/β

Expand Hm−1 with one column:

Hm ∶= [Hm−1 h
0 β

]

end

Algorithm 4: Arnoldi’s method for eigenvalue problems.

History: The Arnoldi method was in-
vented by Walter Edwin Arnoldi in 1951

and the Lanczos method is named after
the work of Cornelius Lanczos in 1950.
In those days, most eigenvalue prob-
lems arose in acoustics and vibrations
that lead to symmetric matrices, which
is one reason the symmetric specializa-
tion was invented first. The Krylov
method is named after Aleksey Krylov
(or Alekséĭ Krylóv) who presented
some ideas for Krylov subspaces in the
context of naval engineering in 1931.
This method class was also deemed the
one of the most important algorithms in
the 20th century by SIAM - Society of in-
dustrical and applied mathematics.
Current research: Large parts of the
current international numerical linear
algebra research community focus on
Krylov methods, with challanges rang-
ing from modern hardware implemen-
tations to generalizations for structured
eigenproblems in new emerging fields.
Search the web for “book of abstracts”
and “numerical linear algebra” and
“Krylov”.

1.3.3 The Lanczos method

There are various ways to improve and specialize the Arnoldi method
for specific matrix structures. The most prominent specialization is for
symmetric matrices and called the Lanczos method. First observe that
Hm can be expressed as

Hm = QT
m AQm.

By transposing the left-hand side and the right-hand side we obtain

HT
m = (QT

m AQm)T = QT
m ATQm = QT

m A = Qm = Hm.

Hence, Hm is also symmetric. Since Hm is both symmetric and has
The Lanczos iteration is also described
in TB pages 276-278.the Hessenberg structure, it is a tridiagonal matrix. This forms the
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foundation of the derivation of the Lanczos method.
Output: Eigenpair approximations
Input: The matrix A and vector b.
b =arbitrary, q1 = b/∥b∥, H0 =empty matrix
for m = 1, 2, . . . do

v = Aqm

αm = qT
mv

v = v − βm−1qm−1 − αmqm

βm = ∥v∥
qm+1 = v/βm

end
Construct the matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1

β1 ⋱ ⋱
⋱ ⋱ βm−1

βm−1 αm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Algorithm 5: The Lanczos method

x1.4 Convergence of Arnoldi’s method for eigenvalue problems

Recall that, unless it breaks down, k steps of the Arnoldi method gener-
ates an orthogonal basis of a Krylov subspace, represented by a matrix
Q = [q1, . . . , qk] ∈ Cn×k such that Q∗Q = I and

span(q1, . . . , qk) = Kk(A, b) ∶= span(b, Ab, . . . , Ak−1b).

The eigenvalue approximations (called Ritz values) are subsequently
found from the eigenvalues of

H = Q∗AQ.

The matrix H ∈ Ck×k is a Hessenberg matrix and can be generated as a
by-product of the Arnoldi method. We call a pair (µ, Qv) a Ritz pair
and Qv a Ritz vector, if v and µ safisfy

Hv = µv.

1.4.1 Bound for subspace-eigenvector angle

As a first indicator of the convergence we will characterize the follow-
ing quantity

Recall: Q ∈ Cn×k is an orthogonal matrix
which means that Q∗Q = I ∈ Ck×k .
However, I ≠ QQ∗ ∈ Cn×n.

error in eigenvector xi ∼ ∥(I −QQ∗)xi∥ (1.13)

where
Axi = λixi.
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It is very natural to associate the accuracy of the eigenvector with this
quantity from a geometric perspective. The indicator in the right-hand
side of (1.13) is called (the norm of) the orthogonal complement of the
projection of xi onto the space spanned by Q and it can be interpreted
as the sine of the canonical angle between the Krylov subspace and an
eigenvector. For the moment, we will only justify this indicator with
this geometric reasoning and the following observation:

Lemma 1.4.1. Suppose (λi, xi) is an eigenpair A. If the Krylov subspace
contains the eigenvector (xi ∈ Kk(A, b)), then the indicator vanishes∥(I −
QQ∗)xi∥ = 0 and there is at least one Ritz value µ such that µ = λi. The Arnoldi method produces an exact

approximation if the Krylov subspace
contains an eigenvector, or equivalently
the indicator is zero.

In words:

• Suppose the Krylov subspace contains the eigenvector (xi ∈ Kk(A, b)).
Then, there exists a vector z ∈ Ck such that xi = Qz. Moreover, this
is an eigenvector of H such that the Arnoldi method will generate
an exact eigenvalue of A. Moreover, the indicator is ∥(I −QQ∗)xi∥ =
∥(I −QQ∗)Qz∥ = 0.

• If, similar to above, xi ≈ x ∈ Kk(A, b), we expect the indicator to be
small and an eigenvalue of H also to be close λi.

The indicator can be bounded as follows, where we assume diago-
nalizability of the matrix.

Theorem 1.4.2. Suppose A ∈ Cn×n is diagonalizable and let the matrix
X = (x1, . . . , xn) ∈ Cn×n and diagonal matrix Λ ∈ Cn×n be the Jordan de-
composition such that

A = XΛX−1.

Suppose α1, . . . , αn ∈ C/{0} are such that
Recall: The eigenvectors of a diagonal-
izable matrix form a basis of Cn.b = α1x1 +⋯+ αnxn (1.14)

and

ε
(m)
i ∶= min

p∈Pm−1
p(λi)=1

max(∣p(λ1)∣, . . . , ∣p(λi−1)∣, ∣p(λi+1)∣, . . . , ∣p(λn)∣)

where Pn denotes polynomials of degree n. Suppose the Arnoldi method does
not break down when applied to A and started with b. Let Q ∈ Cn×m be the
orthogonal basis generated after m iterations. Then, The indicator can be bounded by

a product consisting of two scalar
values: ε

(m)
i which only depends on the

eigenvalues and iteration number; and
ξi only depending on the starting vector
and eigenvectors.

∥(I −QQ∗)xi∥ ≤ ξiε
(m)
i , (1.15)

where

ξi =
n
∑
j=1
j≠i

∣αj∣
∣αi∣

.
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Proof. The proof consists of three steps.

1. Consider any vector u ∈ Cn. Then

min
z∈Cm

∥u −Qz∥2

is a linear least squares problem with a solution given by the normal
equations Q∗u = Q∗Qz. Hence, z = Q∗u. This implies that (for any
vector u) we have

min
z∈Cm

∥u −Qz∥2 = ∥u −QQ∗u∥ = ∥(I −QQ∗)u∥

2. Although we ultimately want to bound the left-hand side of (1.15),
the proof is simplified by considerations of a scaling the left-hand
side of (1.15) with αi as follows:

Apply step 1 reversely with u = αixi

∥(I −QQ∗)αixi∥ = min
z∈Cm

∥αixi −Qz∥

= min
y∈Km(A,b)

∥αixi − y∥

Now note that the space Km(A, b) can be characterized with poly-
nomials. It is easy to verify that y ∈ Km(A, b) is equivalent to the
existance of a polynomial p ∈ Pm−1 such that y = p(A)b. Conse-
quently,

∥(I −QQ∗)αixi∥ = min
p∈Pm−1

∥αixi − p(A)b∥.

3. The final step consists of inserting the expansion of b in terms of
eigenvectors (1.14) and applying appropriate bounds:

Since xi eigenvector, p(A)xi = p(λi)xi

For any two sets S ⊂ Z:
minz∈Z g(z) ≤ minz∈S g(z)
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∥(I −QQ∗)αixi∥ = min
p∈Pm−1

∥αixi − p(A)
n
∑
j=1

αjxj∥

= min
p∈Pm−1

XXXXXXXXXXXX
αixi −

n
∑
j=1

αj p(λj)xj

XXXXXXXXXXXX

≤ min
p∈Pm−1
p(λi)=1

XXXXXXXXXXXX
αixi −

n
∑
j=1

αj p(λj)xj

XXXXXXXXXXXX

= min
p∈Pm−1
p(λi)=1

∥αixi − αixi −
n
∑
j=1
j≠i

αj p(λj)xj∥

= min
p∈Pm−1
p(λi)=1

∥
n
∑
j=1
j≠i

αj p(λj)xj∥

≤ (
n
∑
j=1
j≠i

∣αj∣) ⋅ min
p∈Pm−1
p(λi)=1

max
j≠i

(∣p(λj)∣)

= (
n
∑
j=1
j≠i

∣αj∣) ⋅ ε
(m)
i

The conclusion of the theorem is established by dividing the equa-
tion by ∣αi∣.

Note that ∥b∥ = 1 and ∥x1∥ = ⋯ = ∥xn∥ = 1. Hence the coefficients
α1, . . . , αn are balanced. In particular they satisfy

1 = ∥α1x1 +⋯+ αnxn∥ ≤ ∣α1∣ +⋯+ ∣αn∣.

and

ξi =
1
∣αi∣

n
∑
j=1

∣αj∣ − 1 ≥ 1
∣αi∣

− 1

From this we can easily identify a very good situation and a very bad
situation.

• Suppose for all j ≠ i, αj = δ and suppose δ is small. We have that

ξi = (n−1)δ
αi

. Due to balancing αi cannot be small. Hence, ξi is small,
showing fast convergence for this eigenvalue.

• On the other hand, if αi (the component of the starting vector in the
direction of the ith eigenvector) is very small, we have ξi ≫ 1 which
implies that the right-hand side of (1.15) is large and we have slow
convergence.

This serves as a justification for a more general property.
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Rule-of-thumb. Starting vector dependency. The Arnoldi
method for eigenvalue problems will “favor” eigenvectors
which have large components in the starting vector.

The word “favors” is purposely vague. It should be interpreted as the
situation that one observes often in practice, but certainly not always.
If we have a particular structure in the matrix or starting vector, we
might observe convergence to other eigenvalues.

Bounding ε
(m)
i

In the characterization of the indicator in Theorem 1.4.2 above we in-
troduced the quantity ε

(m)
i . This quantity bounds (up to a constant) the

error in eigenvector xi at iteration m. Although ε
(m)
i is defined through Think: ε

(m)
i measures how “difficult” it

is to push down a polynomial in points
λj, for all j ≠ i and maintain p(λi) = 1.

a polynomial optimization problem, which is complicated to solve, it
is surprisingly easy to use this to obtain bounds providing qualitative
understanding of the convergence of the Arnoldi method for eigen-
value problems. We illustrate the power with a specific bound.

Corollary 1.4.3. Suppose C(ρ, c) ⊂ C is a disk centered at c ∈ C with radius
ρ such that it contains all eigenvalues but λ1. That is, λ2, . . . , λn ∈ C(ρ, c)
and λ1 /∈ C(ρ, c). Then,

ε
(m)
1 ≤ ( ρ

∣λ1 − c∣ )
m−1

.

λ1
ρ

c

Re

Im
eigenvalues

Proof. The proof consists of selecting a particular polynomial in the
polynomial optimization problem,

ε
(m)
1 ∶= min

p∈Pm−1
p(λ1)=1

max(∣p(λ1)∣, . . . , ∣p(λi−1)∣, ∣p(λi+1)∣, . . . , ∣p(λn)∣)

= max
j≠i

∣q(λj)∣,

for any q ∈ Pm−1 satisfying q(λ1) = 1, in particular

q(z) = 1
(λ1 − c)m−1 (z − c)m−1.

Hence, from the definition of ρ and c we have that

ε
(m)
1 ≤ max

i>1

∣λi − c∣m−1

∣λ1 − c∣m−1

≤ ρm−1

∣λ1 − c∣m−1 .
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The result can be intuitively interpreted as follows. If we can con-
struct a small disc that encloses all eigenvalues but one eigenvalue we
expect fast (at least linear geometric) convergence for that eigenvalue.
This can be achieved for an eigenvalue which is well separated from
the rest of the eigenvalues and also in an outer part of the spectrum.
We call this “extreme” isolated eigenvalues.

Rule-of-thumb. Eigenvalue dependency. Arnoldi’s method
for eigenvalue problems favors convergence to “extreme” iso-
lated eigenvalues.

Note the difference between an “extreme” eigenvalue and the eigen-
values which are largest in modulus (absolute value). The Arnoldi
method will favor “extreme” whereas the power method will essen-
tially always converge to the eigenvalue largest in modulus.

1.4.2 An a posteriori theorem

A priori vs. a posteriori: Error char-
acterizations can be classified into two
types. An a priori (latin for “from be-
fore”) error estimate involves quantities
which are known before the algorithm
is carried out. An a posteriori (latin for
“from after”) error characterization in-
volves quantites computed during the it-
eration. Theorem 1.4.2 is an a priori er-
ror bound. Theorem 1.4.4 is an (exact)
a posteriori error characterization since
the right-hand side involves Hk and z
which are computed from the iteration.

In the previous section we saw a characterization of the error involving
the eigenvectors and eigenvalues of the matrix A. The following result
provides an explicit characterization of ∥Av − µv∥ where (µ, v) is an
approximate eigenpair. It is expressed in terms of quantities computed
during the iteration.

Theorem 1.4.4. Suppose Qk and Hk satisfy the Arnoldi relation

AQk = Qk+1Hk (1.16)

where Qk ∈ Cn×k and Qk+1 = [Qk, qk+1] ∈ Cn×(k+1) are orthogonal matrices.
Moreover, suppose (µ, v) is a Ritz pair such that Hkz = µz and v = Qkz.
Then,

∥Av − µv∥2 = ∣hk+1,k∣∣eT
k z∣. (1.17)

Proof. From the fact that (µ, v) is a Ritz pair, we have

Use v = Qkz.

Use that since Hk is a Hessenberg
matrix, (1.16) can be written as
AQk = Qk Hk + hk+1,kqk+1eT

k .

Av − µv = AQkz − µQkz

= (AQk −Qk Hk)z

= hk+1,kqk+1eT
k z

The conclusion follows from the fact that eT
k z is a scalar and qk+1 is

normalized since Qk+1 is orthogonal. More precisely, ∥Av − µv∥2 =
∣hk+1,k∣∥qk+1eT

k z∥ = ∣hk+1,k∣∥qk+1∥∣eT
k z∣ = ∣hk+1,k∣∣eT

k z∣.

The result can be used to study break-down. Break-down corre-
sponds to the situation where we cannot carry out that Gram-Schmidt
orthogonalization process since the new vector is contained in the span
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of previous iterations. It implies that the y⊥ = 0 and β = 0. This implies
in turn that hk+1,k = 0. Hence, due to (1.17), if we have breakdown the
error is already zero and the Ritz pairs are eigenpairs of the original
problem.

x1.5 Shift-and-invert Arnoldi method

We saw that the convergence of the Arnoldi method was given in terms
of a polynomial optimization, which in turn gave bounds on the con-
vergence factor; from which we conclude favorable convergence for
the outer part of the spectrum. In an application, this may not nec-
essarily be the eigenvalues of interest. This sitution is similar to the
power method. Similar to the construction of inverse iteration we can
transform the problem and use the Arnoldi method on a matrix:

B = (A − µI)−1,

where µ is called a shift (or target). This is called the shift-and-invert
Arnoldi method.

Properties:

• The shift-and-invert Arnoldi method requires a linear solve per it-
eration, in contrast to the standard Arnoldi method which requires
a matrix-vector multiplication.

• The convergence if shift-and-invert Arnoldi method is completely
given by the convergence of the Arnoldi method with the trans-
formed matrix B.

• In contrast to inverse iteration, which is essentially guaranteed to
converge to the closest eigenvalue, the shift-and-invert Arnoldi method
in practice often converges to eigenvalues close to µ, but the pre-
cise relationship is more complicated, since the convergence of the
Arnoldi method is more complicated than the convergence of the
power method.

• The eigenvalue extraction in shift-and-invert Arnoldi method can be
done in different ways. The standard approach to extract eigenvalue
approximations is to use Hm such that

(A − µI)−1Qm = Qm+1Hm. (1.18)

Another approach is to use Gm = QT
m AQm, where Qm is generated

from the Arnoldi method applied to (A − µI).
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x1.6 Literature and further reading

The proof and reasoning above is inspired by [5]. Other convergence
bounds involving Schur factorizations, that lead to similar qualitative
understanding can be found in [6], where also complications of the
non-generic cases are discussed. There are also further characteriza-
tions of convergence and the connection with potential theory [4]. In
the above reasoning we characterized the angle between the subspace
and the eigenvector. Although this serves as a very accurate prediction
of the error in practice, it does not directly give a rigorous bound on
the accuracy of Ritz pair. Several approaches to describe the conver-
gence of Ritz values and Ritz vectors have been done in for instance
[2, 3]. There is also considerable research on the effect of rounding
errors in Krylov methods. Unlike many other numerical methods, the
effect of finite arithmetic can improve the performance of the algo-
rithm. See also the recent summary of the convergence of the Arnoldi
method for eigenvalue problems [1]. The a posteriori error estimate
in Theorem 1.4.4 is contained in some recent text-books in numerical
linear algebra such as [7].

x1.7 Appendix: Round-off error analysis of Gram-Schmidt

We now investigate what happens if we have an error in the computa-
tion of the Gram-Schmidt coefficients. In other words, we assume that
h is approximated by

h̃ =
⎡⎢⎢⎢⎢⎢⎣

(1+ ε1)h1

⋮
(1+ εm)hm

⎤⎥⎥⎥⎥⎥⎦
= (

⎡⎢⎢⎢⎢⎢⎢⎣

1
⋱

1

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

ε1

⋱
εm

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Λε

)QTb (1.19)

where ε1, . . . , εm are a small number introduced by the inexact evalua-
tion of QTb, typically of order of the same order of magnitude εmach.
Our approximation of z satisfies

z̃ = b −Qh̃ = b −QΛεQTb(1+ ε) = z −QΛεQTb (1.20)

such that

q̃m+1 =
1

∥z̃∥ z̃ = 1
∥z −QΛεQTb∥ z̃ = 1√

(z −QΛεQTb)T(z −QΛεQTb)
z̃ =

1√
(z −QΛεQTb)T(z −QΛεQTb)

z̃ = 1√
∥z∥2 + ∥Λε∥2∥QQTb∥2

z̃ =

z̃( 1
∥z∥ +O(ε2)), (1.21)
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where ε = ∥Λε∥. The approximation of the new vector is

q̃m+1 = (z−QΛεQTb)( 1
∥z∥ +O(ε2)) = z

∥z∥ −
1

∥z∥QΛεQTb+O(ε2) (1.22)

In this first-order estimation, we see that the error is small if

∥QΛεQTb∥
∥z∥ = ∥ΛεQTb∥

∥z∥ ≤ ε
∥QTb∥
∥z∥

is small.
A bad situation can easily be identified, since we can construct a

situation where ∥z∥ is small but QTb is not: Suppose b = q + δe where
q = Qd and e ⊥ Q and ∥e∥ = 1. A direct computation leads to

∥q̃m+1 −
z

∥z∥∥ ≤
∣ε∣
∣δ∣ ∥Qd∥ +O(ε2).

which suggests that the round-off error is proportional to ∣ε∣/∣δ∣.
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