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x3 QR algorithm

We saw in the previous lectures that a Schur factorization of a matrix
A ∈ Cn×n directly gives us the eigenvalues. More precisely, if we can
compute P and U such that

A = PUP∗,

where P∗P = I and U is upper triangular, then the eigenvalues of A
are given by the diagonal elements of U.

The QR method developed by Francis in
1960’s [4] is classified as one of the top-
ten developments in computation in the
20th century. The performance and ro-
bustness is still actively improved within
the numerical linear algebra research
community.

We will now introduce the QR-method, which is sometimes called
the QR-algorithm or Francis’s QR-steps [4]. The goal of the method
is to compute a Schur factorization by means of similarity transfor-
mations. The total complexity of the algorithm is essentially O(n3),
which can only be achieved in practice after several improvements are
appropriately taken into account. Most of this chapter is devoted to
improving the basic QR-method. The fundamental results for the con-
vergence are based on connections with the power method and simul-
taneous iteration and will be covered later in the course.

Although the QR-method can be successfully adapted to arbitrary
complex matrices, we will here for brevity concentrate the discussion
on the case where the matrix has only real eigenvalues.

x3.1 Basic variant of QR-method

As the name suggests, the QR-method is tightly coupled with the QR-
factorization. Consider for the moment a QR-factorization of the ma-
trix A,

A = QR

where Q∗Q = I and R is upper triangular. We will now reverse the
order of multiplication product of Q and R and eliminate R,

RQ = Q∗AQ. (3.1)

Since Q∗AQ is a similarity transformation of A, RQ has the same
eigenvalues as A. More importantly, we will later see that by repeat-
ing this process, the matrix RQ will become closer and closer to upper
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triangular, such that we eventually can read off the eigenvalues from
the diagonal. That is, the QR-method generates a sequence of matrices

Idea of basic QR-method: compute a QR-
factorization and reverse the order of
multiplcation of Q and R.

Ak initiated with A0 = A and given by

Ak = RkQk,

where Qk and Rk represents a QR-factorization of Ak−1,

Ak−1 = QkRk.

Algorithm 1 Basic QR algorithm
Input: A matrix A ∈ Cn×n

Output: Matrices U and T such that A = UTU∗.
Set A0 ∶= A and U0 = I
for k = 1, . . . do

Compute QR-factorization: Ak−1 =∶ QkRk

Set Ak ∶= RkQk

Set Uk ∶= Uk−1Qk

end for
Return T = A∞ and U = U∞

Although the complete understanding of convergence of the QR-
method requires theory developed in later parts of this course, it is
instructive to already now formulate the character of the convergence.
Let us assume the eigenvalues are distinct in modulus and ordered as
∣λ1∣ > ∣λ2∣ > ⋯ > ∣λn∣. Under certain assumptions, the elements of the
matrix Ak below the diagonal will converge to zero according to

∣a(k)ij ∣ = O(∣λi/λj∣
k
) for all i > j. (3.2)

Example (basic QR-method)

We conduct a simple matlab experiment to illustrate the convergence.
To that end we construct a matrix with eigenvalues 1, 2, . . . , 10 and run
the basic QR-method.

D=diag(1:10);

rand(’seed’,0);

S=rand(10); S=(S-0.5)*2;

A=S*D*inv(S);

for i=1:100

[Q,R]=qr(A);

A=R*Q
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end

norm(sortrows(diag(A))-sortrows(diag(D)))

In the last step, this program returns 5 ⋅ 10−5, suggesting that we do
find reasonably accurate eigenvalues. This is confirmed by the fact
that the matrix A does indeed approach an upper triangular matrix,
which can be seen in the following illustration of Ak.
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Moreover, the illustration suggests that Ak approaches a triangular
matrix where the diagonal elements are ordered by (descending) mag-
nitude. Since the diagonal elements of a triangular matrix are the
eigenvalues, our observation is here a(k)11 → λ1 = 10, a(k)22 → λ2 = 9, . . .,

a(k)10 → λ10 = 1 (which we will be able to show later in this course).
We can also observe the convergence claimed in (3.2) by considering

the quotient of the elements below the diagonal of two consecutive
iterations. Let A20 and A21 be the matrices generated after k = 20 and
k = 21 iterations. In MATLAB notation we have

>> A21./A20

ans =

1.0002 0.9313 1.0704 0.9854 1.0126 0.9929 0.9952 0.9967 1.2077 -1.0087

0.9118 1.0003 0.9742 1.0231 0.8935 1.0534 1.0614 1.0406 1.0082 -0.9828

0.8095 0.8917 1.0003 2.7911 1.4191 0.9689 0.9999 0.9508 0.9941 -1.0260

0.7005 0.7718 0.8676 0.9992 0.9918 1.0509 0.2971 1.0331 0.8996 -0.2654

0.5959 0.6746 0.7411 0.8436 1.0001 1.0022 0.9901 1.0007 0.9650 -1.0036

0.5013 0.5602 0.6303 0.7224 0.8309 0.9997 1.0349 0.9901 0.9993 -1.0113

0.4005 0.4475 0.4993 0.5904 0.6669 0.7908 1.0000 1.0035 1.0022 -0.9996

0.3007 0.3344 0.3738 0.4355 0.5002 -1.9469 0.7460 0.9998 1.0006 -1.0007

0.2002 0.2227 0.2493 0.2899 0.3332 0.4044 0.4994 0.6660 1.0003 -0.9994

-0.1001 -0.1119 -0.1259 -0.1426 -0.1669 -0.1978 -0.2500 -0.3332 -0.5000 1.0000

The elements below the diagonal in the output are consistent with (3.2)
in the sense that the (i, j) element of the output is

∣a(21)
i,j /a(20)

i,j ∣ ≈ ∣λi/λj∣, i ≥ j + 1.

Downsides with the basic QR-method

Although the basic QR-method in general converges to a Schur factor-
ization when k →∞, it is not recommended in practice.

The basic QR-method is often slow, in
the sense that the number of iterations
required to reach convergence is in gen-
eral high. It is in general expensive in
the sense that the computational effort
required per step is high.

Disadvantage 1. One step of the basic QR-method is relatively expen-
sive. More precisely,

the complexity of one step of the basic QR-method = O(n3
).
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Hence, even in an overly optimistic situation where the number of
steps would be proportional to n, the algorithm would need O(n4)

operations.

Disadvantage 2. Usually, many steps are required to have conver-
gence; certainly much more than n. In fact, the basic QR-method
can be arbitrarily slow if the eigenvalues are close to each other. It
is often slow in practice.

x3.2 The two-phase approach

The disadvantages of the basic QR-method suggest that several im-
provements are required to reach a competitive algorithm. The Hes-
senberg matrix structure will be crucial for these improvements.

Definition 3.2.1 A matrix H ∈ Cn×n is called a Hessenberg matrix if its
elements below the lower off-diagonal are zero, Structure of a Hessenberg matrix:

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× ⋯ ⋯ ⋯ ×

× ⋱ ⋮

0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ×

0 ⋯ 0 × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

hi,j = 0 when i > j + 1.

The matrix H is called an unreduced Hessenberg matrix if additionally
hi,i+1 ≠ 0 for all i = 1, . . . , n − 1.

Our improved QR-method will be an algorithm consisting of two phases,
illustrated as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
Phase 1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × ×

× ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
Phase 2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × ×

× × ×

× ×

×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Phase 1. (Section 3.2.1). In the first phase we will compute a Hessen-
berg matrix H (and orthogonal U) such that

A = UHU∗.

Unlike the Schur factorization (A = UTU∗ where T is upper triangu-
lar) such a reduction can be done with a finite number of operations.

Phase 2. (Section 3.2.2). In the second phase we will apply the basic
QR-method to the matrix H. It turns out that several improvements
can be done when applying the basic QR-method to a Hessenberg
matrix such that the complexity of one step is O(n2), instead of
O(n3) in the basic version.
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3.2.1 Phase 1. Hessenberg reduction

In the following it will be advantageous to use the concept of House-
holder reflectors.

Definition 3.2.2 A matrix P ∈ Cn×n of the form

P = I − 2uu∗ where u ∈ Cn and ∥u∥ = 1

is called a Householder reflector.
Px

u
x

Figure 3.1: A Householder reflector
is a “reflector” in the sense that the
multiplication of P with a vector gives
the mirror image with respect to the
(hyper) plane perpendicular to u.

Some properties of Householder reflectors:

• A Householder reflector is always hermitian P = P∗

• Since P2 = I, a Householder reflector is always orthogonal and P−1 =

P∗ = P

• If u is given, the corresponding Householder reflector can be multi-
plied by a vector in O(n) operations:

Px = x − 2u(u∗x) (3.3)

Householder reflectors satisfying Px = αe1

We will now explicitly solve this problem: Given a vector x, construct a
Householder reflector such that Px is a multiple of the first unit vector.
This tool will be used several times throughout this chapter.

Lemma 3.2.3 Suppose x ∈ Rm/{0} and let ρ = ±1 and α ∶= ρ∥x∥. Let

u =
x − αe1

∥x − αe1∥
=

z
∥z∥

, (3.4)

where
The choice of u in (3.4) is the normal vec-
tor of a plane such that the mirror image
of x is in the direction of the first unit
vector.

z ∶= x − αe1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 − ρ∥x∥
x2

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, the matrix P = I − 2uuT is a Householder reflector and

Px = αe1.

Proof The matrix P is a Householder reflector since u is normalized.
From the definition of z and α we have zTz = (x − αe1)

T(x − αe1) =

2(∥x∥2 − ρ∥x∥x1). Similarly, zTx = ∥x∥2 − ρ∥x∥x1. Hence

uuTx =
z

∥z∥
zT

∥z∥
x =

zTx
zTz

z =
1
2

z

and (I − 2uuT)x = x − z = αe1, which is the conclusion of the lemma.
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∎

In principle, ρ can be chosen freely (provided ∣ρ∣ = 1). The choice
ρ = − sign(x1), is often better from the perspective of round-off errors.
With this specific choice of ρ, Lemma 3.2.3 also holds in complex arith-
metic.

Repeated application of Householder reflectors

By carrying out n − 2 orthogonality transformations with (cleaverly
constructed) Householder reflectors we will now be able to reduce the
matrix A to a Hessenberg matrix.

In the first step we will carry out a similarity transformation with a
Householder reflector P1, given as follows

Note: I − 2u1uT
1 ∈ C(n−1)×(n−1) is the

Householder reflector associated with
u1 ∈ Cn−1 and P1 ∈ Cn×n in (3.5) is the
Householder reflector associated with
[0, uT

1 ] ∈ Cn.P1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
1 0T

0 I − 2u1uT
1
] . (3.5)

The vector u1 will be constructed from elements of the matrix A. More
precisely, they will be given by (3.4) with xT = [a21, . . . , an1] such that
the associated Householder reflector satisfies

(I − 2u1uT
1 )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a21

⋮

an1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= αe1.

Hence, multiplying A from the left with P1 inserts zeros in desired
positions in the first column,

P1 A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × × ×

× × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In order to have a similarity transformation, we must also multiply
from the right with P∗1 . Recall that P∗1 = P1 since Householder reflectors
are Hermitian. Because of the non-zero structure in P1 the non-zero
structure is unchanged and we have a matrix P1 AP1 which is similar
to A and has desired zero-entries,

In the first step of the Hessenberg re-
duction: A similarity transformation is
constructed such that P1 AP∗1 has the de-
sired (Hessenberg) zero-structure in the
first column.P1 AP∗1 = P1 AP1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × × ×

× × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The process can be repeated and in the second step we set

P2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0T

0 1 0T

0 0 I − 2u2uT
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where u2 is constructed from the n − 2 last elements of the second
column of P1 AP∗1 .

P1 AP1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × × ×

× × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ð→
mult. from
left with P2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × ×

× × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ð→
mult. from

right with P2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × ×

× × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= P2P1 AP1P2

After n − 2 steps we have completed the Hessenberg reduction since

Pn−2Pn−3⋯P1 AP1P2⋯Pn−2 = H,

where H is a Hessenberg matrix. Note that U = P1P2⋯Pn−1 is orthogo-
nal and A = UHU∗ and H have the same eigenvalues.

The complete algorithm is provided in Algorithm 3.2.1. In the algo-
rithm we do not explicitly compute the orthogonal matrix U since it
is not required unless also eigenvectors are to be computed. In every
step in the algorithm we need O(n2) operations and consequently

the total complexity of the Hessenberg reduction = O(n3
).

The Hessenberg reduction in Algo-
rithm 3.2.1 is implemented by overwrit-
ing the elements of A. In this way less
memory is required.

Algorithm 2 Reduction to Hessenberg form
Input: A matrix A ∈ Cn×n

Output: A Hessenberg matrix H such that H = U∗AU.
for k = 1, . . . , n − 2 do

Compute uk using (3.4) where xT = [ak+1,k, ⋯, an,k]

Compute Pk A: Ak+1∶n,k∶n ∶= Ak+1∶n,k∶n − 2uk(u∗k Ak+1∶n,k∶n)

Compute Pk AP∗k : A1∶n,k+1∶n ∶= A1∶n,k+1∶n − 2(A1∶n,k+1∶nuk)u∗k
end for
Let H be the Hessenberg part of A.

3.2.2 Phase 2. Hessenberg QR-method

In the second phase we will apply the QR-method to the output of the
first phase, which is a Hessenberg matrix. Considerable improvements
of the basic QR-method will be possible because of the structure.

Let us start with a simple example:
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>> A=[1 2 3 4; 4 4 4 4;0 1 -1 1; 0 0 2 3]

A =

1 2 3 4

4 4 4 4

0 1 -1 1

0 0 2 3

>> [Q,R]=qr(A);

>> A=R*Q

A =

5.2353 -5.3554 -2.5617 -4.2629

-1.3517 0.2193 1.4042 2.4549

0 2.0757 0.6759 3.6178

0 0 0.8325 0.8696

The code corresponds to one step of the basic QR method applied to
a Hessenberg matrix. Note that the result is also a Hessenberg matrix.
This obsevation is true in general. (The proof is postponed.)

A basic QR-step preserves the Hes-

senberg structure. Hence, the basic
QR-method also preserves the Hessen-
berg structure.

Theorem 3.2.4 If the basic QR-method (Algorithm 3.1) is applied to a Hes-
senberg matrix, then all iterates Ak are Hessenberg matrices.

We will now explicitly characterize a QR-step for Hessenberg matrices,
which can be used in all subsequent QR-steps.

Fortunately, the QR-decomposition of a Hessenberg matrix has a
particular structure which indeed be characterized and exploited. To
this end we use the concept of Givens rotations.

ej

ei

x

Gx
θ

Figure 3.2: A Givens rotation G =

G(i, j, cos(θ), sin(θ)) is a “rotation” in
the sense that the application onto a
vector corresponds to a rotation with
angle θ in the plane spanned by ei and
ej.

Definition 3.2.5 Let c2 + s2 = 1. The matrix G(i, j, c, s) ∈ Rn×n correspond-
ing to a Givens rotation is defined by

G(i, j, c, s) ∶= I + (c − 1)eie
T
i − seie

T
j + seje

T
i + (c − 1)eje

T
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I
c −s

I
s c

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.6)

We note some properties of Givens rotations:

• G(i, j, c, s) is an orthogonal matrix.

• G(i, j, c, s)∗ = G(i, j, c,−s)

• The operation G(i, j, c, s)x can be carried out by only modifying two
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elements of x,

G(i, j, c, s)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
⋮

xi−1
xi

xi+1
⋮

xj−1
xj

xj+1
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
⋮

xi−1
cxi−sxj

xi+1
⋮

xj−1
sxi+cxj

xj+1
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.7)

The QR-factorization of Hessenberg matrices can now be explicitly ex-
pressed and computed with Givens rotations as follows.

Theorem 3.2.6 Suppose A ∈ Cn×n is a Hessenberg matrix. Let Hi be gener-
ated as follows H1 = A

Hi+1 = GT
i Hi, i = 1, . . . , n − 1

where Gi = G(i, i + 1, (Hi)i,i/ri, (Hi)i+1,i/ri) and ri =
√

(Hi)
2
i,i + (Hi)

2
i+1,i

and we assume ri ≠ 0. Then, Hn = R is upper triangular and
Theorem 3.2.6 implies that the Q-matrix
in a QR-factorization of a Hessenberg
matrix can be factorized as a product of
n − 1 Givens rotations.

A = (G1G2⋯Gn−1)Hn = QR

is a QR-factorization of A.

Proof It will be shown that the matrix Hi is a reduced Hessenberg
matrix where the first i − 1 lower off-diagonal elements are zero. The
proof is done by induction. The start of the induction for i = 1 is trivial.
Suppose Hi is a Hessenberg matrix with (Hi)k+1,k = 0 for k = 1, . . . , i−1.
Note that the application of Gi only modifies the ith and (i+ 1)st rows.
Hence, it is sufficient to show that (Hi+1)i+1,i = 0. This can be done by
inserting the formula for G in (3.6),

Use the definition of ci = (Hi)i,i/r and
si = (Hi)i+1,i/r

(Hi+1)i+1,i = eT
i+1GT

i Hiei

= eT
i+1[I + (ci − 1)eie

T
i + (ci − 1)ei+1eT

i+1

− siei+1eT
i + sieie

T
i+1]Hiei

= (Hi)i+1,i + (ci − 1)(Hi)i+1,i − si(Hi)i,i

= ci(Hi)i+1,i − si(Hi)i,i = 0

By induction we have shown that Hn is a triangular matrix and Hn =

GT
n−1Gn−2⋯GT

1 A and G1⋯Gn−1Hn = A.

∎
Idea Hessenberg-structure exploitation:
Use factorization of Q-matrix in terms
of product of Givens rotations in order
to compute RQ with less operations.

The theorem gives us an explicit form for the Q matrix. The theorem
also suggests an algorithm to compute a QR-factorization by applying
the Givens rotations and reaching R = Hn. Since the application of a
Givens rotator can be done in O(n), we can compute QR-factorization
of a Hessenberg matrix in O(n2) with this algorithm. In order to carry
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out a QR-step, we now reverse the multiplication of Q and R which
leads to

Ak+1 = RQ = Q∗AkQ = HnG1⋯Gn−1

The application of G1⋯Gn−1 can also be done in O and consequently

the complexity of one Hessenberg QR step = O(n2
)

The algorithm is summarized in Algorithm 3.2.2. In the algorithm
[c,s]=givens(a,b) returns c = a/

√
a2 + b2 and s = b/

√
(a2 + b2).

Algorithm 3 Hessenberg QR algorithm
Input: A Hessenberg matrix A ∈ Cn×n

Output: Upper triangular T such that A = UTU∗ for an orthogonal
matrix U.
Set A0 ∶= A
for k = 1, . . . do

// One Hessenberg QR step
H = Ak−1

for i = 1, . . . , n − 1 do
[ci, si] = givens(hi,i, hi+1,i)

Hi∶i+1,i∶n = [
ci si

−si ci
] Hi∶i+1,i∶n

end for
for i = 1, . . . , n − 1 do

H1∶i+1,i∶i+1 = H1∶i+1,i∶i+1 [
ci −si

si ci
]

end for
Ak = H

end for
Return T = A∞

x3.3 Acceleration with shifts and deflation

In the previous section we saw that the QR-method for computing the
Schur form of a matrix A can be executed more efficiently if the matrix
A is first transformed to Hessenberg form.

The next step in order to achieve a competitive algorithm is to im-
prove the convergence speed of the QR-method. We will now see that
the convergence can be dramatically improved by considering a QR-
step applied to the matrix formed by subtracting a multiply of the
identity matrix. This type of acceleration is called shifting.

First note the following result for singular Hessenberg matrices.
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Lemma 3.3.1 Suppose H ∈ Cn×n is an irreducible Hessenberg matrix. Let
QR = H be a QR-decomposition of H. If H is singular, then the last diagonal
element of R is zero,

rn,n = 0.
The R-matrix in the QR-decomposition
of a singular unreduced Hessenberg
matrix has the structure

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × ×

× × ×

× ×

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As a justification for the shifting procedure, suppose for the moment
that λ is an eigenvalue of the irreducible Hessenberg matrix H. We will
now characterize the consequence of shifting H, applying one step of
the QR-method and subsequently reverse the shifting:

H − λI = QR (3.8a)

H̄ = RQ + λI (3.8b)

By rearringing the equations, we find that

H̄ = RQ + λI = Q∗
(H − λI)Q + λI = Q∗HQ.

Hence, similar to the basic QR-method, one shifted QR step (3.8) also
corresponds to a similarity transformation. They do however corre-
spond to different similarity transformations since the Q-matrix is gen-
erated from the QR-factorization of H − λI instead of H.

The result of (3.8) has more structure. The shifted QR-step (3.8), where λ is an
eigenvalue of H, generates a reduced
hessenberg matrix with structure

H̄ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × ×

× × × × ×

× × × ×

× × ×

λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Lemma 3.3.2 Suppose λ is an eigenvalue of the Hessenberg matrix H. Let
H̄ be the result of one shifted QR-step (3.8). Then,

h̄n,n−1 = 0

h̄n,n = λ.

Proof The matrix H − λI is singular since λ is an eigenvalue of H.
From Lemma 3.3.1 we have that rn,n = 0. The product RQ in (3.8b)
implies that the last row of RQ is zero. Hence, h̄n,n = λ and h̄n,n−1 = 0.

∎

Since H̄ has the eigenvalue λ, we conclude that the variant of the QR-
step involving shifting in (3.8), generates an exact eigenvalue after one
step.

Rayleigh quotient shifts

The shifted QR-method can at least in theory be made to give an exact
eigenvalue after only one step. Unfortunately, we cannot choose per-
fect shifts as in (3.8) since we obviously do not have the eigenvalues
of the matrix available. During the QR-method we do however have

The name Rayleigh qoutient shifts comes
from the fact that there is a connection
with the Rayleigh qoutient iteration.

estimates of the eigenvalues. In particular, if the off diagonal elements
of H are sufficiently small, the eigenvalues may be estimated by the
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diagonal elements. In the heuristic called the Rayleigh quotient shift we
select the last diagonal element of H as a shift,

σk = h(k−1)
n,n .

The shifted algorithm is presented in Algorithm 3.3. The steps involv-
Deflation here essentially means that
once an eigenvalue is detected to be
of sufficient accuracy, the iteration is
continued with a smaller matrix from
which the converged eigenvalue has (in
a sense) been removed.

ing a QR factorization can also be executed with Givens rotations as
in Section 3.2.2. The algorithm features a type of deflation; instead of
carrying out QR-steps on n × n matrices, once n −m eigenvalues have
converged we iterate with a matrix of size m ×m.

Algorithm 4 Hessenberg QR algorithm with Rayleigh quotient shift
and deflation
Input: A Hessenberg matrix A ∈ Cn×n

Set H(0) ∶= A
for m = n, . . . , 2 do

k = 0
repeat

k = k + 1
σk = h(k−1)

m,m

Hk−1 − σk I =∶ QkRk

Hk ∶= RkQk + σk I
until ∣h(k)m,m−1∣ is sufficiently small

Save h(k)m,m as a converged eigenvalue
Set H(0) = H(k)1∶(m−1),1∶(m−1) ∈ C(m−1)×(m−1)

end for

x3.4 Convergence of the QR algorithm

For didactic reasons we here assume that the matrix A is symmetric.
We prove the convergence by introducing a new algorithm: Unnor-
malized simultaneous iteration (USI). We show convergence of USI in
Section 3.4.1 and show its equivalence with the QR-method.

3.4.1 Unnormalized simultaneous iteration

Let V(0) ∈ Cn×n be a starting and let V(k), k = 1, . . ., be defined by

V(k) ∶= AV(k−1).

Moreover, we let Q(k) ∈ Cn×n and R(k) ∈ Cn×n be the QR-factorization
of V(k),

Q(k)R(k) = V(k).

We now show that the columns of Q(k) converge to the matrix con-
sisting of eigenvectors, corresponding to the eigenvalues ordered by
magnitude.
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Theorem 3.4.1 (Convergence of USI) Suppose the eigenvalues of A ∈ Rn×n

are distinct in modulus, and let ∣λ1∣ < ⋯ < ∣λn∣. Let the columns of X be eigen-
vectors of A consistently ordered with the eigenvalues. Let V(0) ∈ Rn×n be a
given matrix such that all leading submatrices of X−1V(0) are non-singular.
Let V(k) ∶= AV(k), be the iterates of USI. Then, there exists a sequence of

Theorem 3.4.1 is given in the textbook:
TB Thm 28.1QR-factorizations of V(k) = Q(k)R(k) such that

∥Q(k) −X∥ = O(Ck
)

where C = max`=1,...,n−1 ∣λ`∣/∣λ`+1∣.

Proof Let the LU-factorization of XTV(0) be

LU = X−1V(0) (3.9)

which exists since the leading submatrices of X−1V(0) are non-singular,
by assumption in the theorem. We can now reformulate the iterates of
the unnormlized simultaneous iteration:

V(k) = AkV(0)

= XΛkX−1V(0)

= XΛkLU (3.10)

The matrix ΛkL can be further analyzed by using a technical result
regarding the QR-factorization of a diagonal matrix and an upper tri-
angular matrix (with identity on the diagonal) explicitly given in ap-
pendix Lemma 3.6.2. Essentially it states that if k is large, the Q-matrix
in the QR-factorization of ΛkL is close to the identity matrix,

(I +∆k)U(k) = ΛkL.

where ∆k = O(Ck) → 0. Hence, by inserting into formula (3.10), a we
can explicitly write down a QR-factorization of V(k). More precisely,
Q̂(k)R̂(k) = V(k) where

Q̂(k) = X(I +∆k) = X +O(Ck
).

∎

3.4.2 USI-QR equivalence and QR-algorithm convergence

Read TB pages 215-218.

x3.5 Further reading

The variant of the QR-method that we presented here can be improved
considerably in various ways. Many of the improvements already care-
fully implemented in the high performance computing software such
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as LAPACK [1]. If the assumption that the eigenvalues are real is re-
moved, several issues must be addressed. If A is real, the basic QR
method will in general only converge to a real Schur form, where R
is only block triangular. In the acceleration with shifting, it is ad-
vantageous to use double shifts that preserve the complex conjugate
structure. The speed can be improved by introducing deflation at an
early, see aggressive early deflation cite-kressner. Various aspects of
the QR-method is given more attention in the text-books. In [3] the
QR-method is presented including further discussion of connections
with the LR-method and numerical stability. Some of the presentation
above was inspired by the online material of a course at ETH Zürich
[2]. The book of Watkins [5] has a recent comprehensive discussion of
the QR-method, with a presentation which does not involve the basic
QR-method.

x3.6 Appendix: QR factorization results
Lemma 3.6.1 implies that a small
perturbation in a matrix results in a
small perturbation in the associated
QR-decomposition
The proof of Lemma 3.6.1 and
Lemma 3.6.2 are not a part of the
course.

Lemma 3.6.1 (Smoothness of QR-factorization) Suppose A(ε) = A(0)+
O(ε) ∈ Rm×m. Then there is a Q such that

Q(ε) = Q(0) +O(ε).

and Q(ε)R(ε) = A(ε) is a QR-factorization of A(ε).

Proof The Householder QR-factorization algorithm involves a finite
number of operations with products, sums and division by square
roots. Those operations are all continuously differentiable if defined,
which they are since otherwise the QR-factorization of A(0) would
fail.

∎

Lemma 3.6.2 (QR-factorization for diagonally scaled triangular matrix)
Suppose Λ = diag(λ1, . . . , λm) where ∣λ1∣ < ∣λ2∣ < ⋯ < ∣λm∣. Let L be a
lower triangular matrix with unit diagonal elements. Then, there exists a
QR-factorization

ΛkL = Q(k)R(k). (3.11)

such that
Q(k) = I +∆k

where
∆k = O( max

i=1,...,m−1
∣λi∣/∣λi+1∣)

k. (3.12)

Proof We start by showing (3.11) only for the first column, and pro-
ceed with induction. By multiplying (3.11) with e1, we have

ΛkLe1 = Q(k)R(k)e1 = r(k)11 q(k)1 (3.13)
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Hence,
q(k)1 = ΛkLe1/r(k)11 = e1 +O(λ2/λ1)

k

since (3.13) is the power method for a diagonal matrix. We have se-
lected the sign in the first column of the QR-decomposition such that
qT

1 e1 ≥ 0. We multiply

(I − q(k)1 q(k)1
T
)ΛkL = [0, q(k)2 , . . . , q(k)n ]R(k) = [q(k)2 , . . . , q(k)n ]R(k)

+

[0, In−1]q
(k)
1 = [0, In−1]e1 +O(λ1/λ2)

k
= O(λ1/λ2)

k

Λk
−

L− +O(λ2/λ1) = Q(k)
−

R(k)
−

which via smoothness (Lemma 3.6.1) implies that q(k)2 = e2+O(λ2/λ1)
k +

O(λ3/λ2)
k. The process is repeated.

∎
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