Numerical methods for matrix functions SF2524 - Matrix Computations for Large-scale Systems

Lecture 15: Krylov methods for matrix functions

In this lecture we wish to compute

$$f(A)b$$
,

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

In this lecture we wish to compute

$$f(A)b$$
,

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

Cauchy integral definition leads to

$$f(A)b = \left(\frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - A)^{-1} dz\right) b$$

In this lecture we wish to compute

$$f(A)b$$
,

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

Cauchy integral definition leads to

$$f(A)b = \left(\frac{1}{2i\pi}\oint_{\Gamma}f(z)(zI-A)^{-1}dz\right)b = \frac{-1}{2i\pi}\oint_{\Gamma}f(z)(A-zI)^{-1}bdz$$

In this lecture we wish to compute

$$f(A)b$$
,

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

Cauchy integral definition leads to

$$f(A)b = \left(\frac{1}{2i\pi}\oint_{\Gamma}f(z)(zI-A)^{-1}dz\right)b = \frac{-1}{2i\pi}\oint_{\Gamma}f(z)(A-zI)^{-1}bdz$$

How do we compute?

$$(A - zI)^{-1}b \tag{*}$$

In this lecture we wish to compute

$$f(A)b$$
,

where $A \in \mathbb{R}^{n \times n}$ is a given large sparse matrix.

Cauchy integral definition leads to

$$f(A)b = \left(\frac{1}{2i\pi}\oint_{\Gamma}f(z)(zI-A)^{-1}dz\right)b = \frac{-1}{2i\pi}\oint_{\Gamma}f(z)(A-zI)^{-1}bdz$$

How do we compute?

$$(A - zI)^{-1}b \tag{*}$$

Note: (\star) is a shifted linear system of equations:

$$(A-zI)x=b.$$

We will solve the shifted linear system using an Arnoldi method.

The rest of this lecture

- 1. Arnoldi's method for shifted systems
- 2. GMRES-variant (FOM) for shifted systems
- 3. Use Cauchy definition \Rightarrow Krylov method for matrix functions
- 4. Application to exponential integrators

$$\mathcal{K}_n(A,b) = \mathcal{K}_n(A-\sigma I,b)$$

$$\mathcal{K}_n(A,b) = \mathcal{K}_n(A-\sigma I,b)$$

Proof idea: Find a non-singular R such that $[b, Ab, A^2n, \ldots, A^{n-1}b]R = [b, (A - \sigma I)b, (A - \sigma I)^2b, \ldots, (A - \sigma I)^{n-1}b]$

$$\mathcal{K}_n(A,b) = \mathcal{K}_n(A-\sigma I,b)$$

Proof idea: Find a non-singular R such that $[b, Ab, A^2n, \ldots, A^{n-1}b]R = [b, (A - \sigma I)b, (A - \sigma I)^2b, \ldots, (A - \sigma I)^{n-1}b]$

Recall:
$$W = VR$$
 and R non-singular and w_1, \ldots, w_m linear independent $\Rightarrow \text{span}(w_1, \ldots, w_m) = \text{span}(v_1, \ldots, v_m)$
* Sketch on board *

$$\mathcal{K}_n(A,b) = \mathcal{K}_n(A-\sigma I,b)$$

Proof idea: Find a non-singular R such that $[b, Ab, A^2n, \ldots, A^{n-1}b]R = [b, (A - \sigma I)b, (A - \sigma I)^2b, \ldots, (A - \sigma I)^{n-1}b]$

Recall: W = VR and R non-singular and w_1, \ldots, w_m linear independent $\Rightarrow \operatorname{span}(w_1, \ldots, w_m) = \operatorname{span}(v_1, \ldots, v_m)$ * Sketch on board *

What happens with the Arnoldi factorization?

$$\mathcal{K}_n(A,b) = \mathcal{K}_n(A-\sigma I,b)$$

Proof idea: Find a non-singular R such that $[b, Ab, A^2n, \ldots, A^{n-1}b]R = [b, (A - \sigma I)b, (A - \sigma I)^2b, \ldots, (A - \sigma I)^{n-1}b]$

Recall: W = VR and R non-singular and w_1, \ldots, w_m linear independent $\Rightarrow \text{span}(w_1, \ldots, w_m) = \text{span}(v_1, \ldots, v_m)$ * Sketch on board *

What happens with the Arnoldi factorization?

* On black board *

Arnoldi factorization for a shifted matrix

Suppose we have an Arnoldi factorization

$$AQ_m = Q_{m+1}\underline{H}_m \tag{*}$$

Arnoldi factorization for a shifted matrix

Suppose we have an Arnoldi factorization

$$AQ_m = Q_{m+1}\underline{H}_m \tag{*}$$

Lemma

Suppose $Q_m \in \mathbb{C}^{n \times m}$, $\underline{H}_m \in \mathbb{C}^{(m+1) \times m}$ is an Arnoldi factorization (\star) associated with $\mathcal{K}_m(A,b)$. Then, for any $\sigma \in \mathbb{C}$, $Q_m \in \mathbb{C}^{n \times m}$ and $\underline{H}_m - \sigma I_{m+1,m}$ is an Arnoldi factorization associated with $\mathcal{K}_m(A - \sigma I,b)$,

$$(A - \sigma I)Q_m = Q_{m+1}(\underline{H}_m - \sigma I_{m+1,m}). \tag{**}$$

Arnoldi factorization for a shifted matrix

Suppose we have an Arnoldi factorization

$$AQ_m = Q_{m+1}\underline{H}_m \tag{*}$$

Lemma

Suppose $Q_m \in \mathbb{C}^{n \times m}$, $\underline{H}_m \in \mathbb{C}^{(m+1) \times m}$ is an Arnoldi factorization (\star) associated with $\mathcal{K}_m(A,b)$. Then, for any $\sigma \in \mathbb{C}$, $Q_m \in \mathbb{C}^{n \times m}$ and $\underline{H}_m - \sigma I_{m+1,m}$ is an Arnoldi factorization associated with $\mathcal{K}_m(A - \sigma I,b)$,

$$(A - \sigma I)Q_m = Q_{m+1}(\underline{H}_m - \sigma I_{m+1,m}). \tag{**}$$

where

$$I_{m+1,m} = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \\ 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{(m+1) \times m}.$$

We now wish to solve linear systems:

$$Cx = b$$

(where we later set
$$C = A - \sigma I$$
.)

* Derive on black board *

We now wish to solve linear systems:

$$Cx = b$$

(where we later set $C = A - \sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$
- Compute z=H(1:n,1:n)\e1 \Leftrightarrow $z = H_n^{-1}e_1$
- Compute approximation $\tilde{x} = Q_n z ||b||$

We now wish to solve linear systems:

$$Cx = b$$

(where we later set $C = A - \sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$
- Compute z=H(1:n,1:n)\e1 $\Leftrightarrow z = H_n^{-1}e_1$
- Compute approximation $\tilde{x} = Q_n z ||b||$

Only slight difference in GMRES $z=H(1:n+1,1:n) \setminus e1$.

We now wish to solve linear systems:

$$Cx = b$$

(where we later set $C = A - \sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$
- Compute z=H(1:n,1:n)\e1 $\Leftrightarrow z = H_n^{-1}e_1$
- Compute approximation $\tilde{x} = Q_n z ||b||$

Only slight difference in GMRES $z=H(1:n+1,1:n)\e1$. Convergence very similar to GMRES.

We now wish to solve linear systems:

$$Cx = b$$

(where we later set $C = A - \sigma I$.)

* Derive on black board *

Full Orthogonalization Method (FOM)

- Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$
- Compute z=H(1:n,1:n)\e1 \Leftrightarrow $z = H_n^{-1}e_1$
- Compute approximation $\tilde{x} = Q_n z ||b||$

Only slight difference in GMRES $z=H(1:n+1,1:n)\e1$. Convergence very similar to GMRES.

Relationship with GMRES

- GMRES corresponds to $(AQ_n)^T(A\tilde{x}-b)=0$ (lecture 8)
- FOM corresponds to $Q_n^T(A\tilde{x}-b)=0$

Now consider shifted system:

$$(A - \sigma I)x_{\sigma} = b$$

Now consider shifted system:

$$(A - \sigma I)x_{\sigma} = b$$

FOM for shifted systems

- 1. Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$ from (A, b)
- 2. Compute $zs=(H(1:n,1:n)-\sigma I) \setminus e1 \Leftrightarrow z_{\sigma}=(H_n-\sigma I)^{-1}e_1$
- 3. Compute approximation $\tilde{x}_{\sigma} = Q_n z_{\sigma} \|b\|$

Now consider shifted system:

$$(A - \sigma I)x_{\sigma} = b$$

FOM for shifted systems

- 1. Compute an Arnoldi factorization $AQ_n = Q_{n+1}\underline{H}_n$ from (A, b)
- 2. Compute zs=(H(1:n,1:n)- σ I)\e1 \Leftrightarrow $z_{\sigma}=(H_n-\sigma I)^{-1}e_1$
- 3. Compute approximation $\tilde{x}_{\sigma} = Q_n z_{\sigma} ||b||$

Note: Step 1 is independent of σ and the Step 2-3 can be done for many σ without carrying out Arnoldi method:

$$x_{\sigma} \approx \tilde{x}_{\sigma} = Q_n (H_n - \sigma I)^{-1} e_1 ||b||.$$

$$f(A)b = \frac{-1}{2i\pi} \oint_{\Gamma} f(z)(A - zI)^{-1}b dz$$

$$\approx \frac{-1}{2i\pi} \oint_{\Gamma} f(z)Q_n(H_n - zI)^{-1}e_1||b|| dz$$

$$f(A)b = \frac{-1}{2i\pi} \oint_{\Gamma} f(z)(A - zI)^{-1}b \, dz$$

$$\approx \frac{-1}{2i\pi} \oint_{\Gamma} f(z)Q_{n}(H_{n} - zI)^{-1}e_{1}||b|| \, dz$$

$$= Q_{n} \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - H_{n})^{-1} \, dz \, e_{1}||b||$$

$$f(A)b = \frac{-1}{2i\pi} \oint_{\Gamma} f(z)(A - zI)^{-1}b \, dz$$

$$\approx \frac{-1}{2i\pi} \oint_{\Gamma} f(z)Q_{n}(H_{n} - zI)^{-1}e_{1}||b|| \, dz$$

$$= Q_{n} \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - H_{n})^{-1} \, dz \, e_{1}||b||$$

$$= Q_{n}f(H_{n})e_{1}||b||$$

$$f(A)b = \frac{-1}{2i\pi} \oint_{\Gamma} f(z)(A - zI)^{-1}b \, dz$$

$$\approx \frac{-1}{2i\pi} \oint_{\Gamma} f(z)Q_{n}(H_{n} - zI)^{-1}e_{1}||b|| \, dz$$

$$= Q_{n} \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - H_{n})^{-1} \, dz \, e_{1}||b||$$

$$= Q_{n}f(H_{n})e_{1}||b||$$

Krylov approximation of matrix functions

$$f(A)b \approx f_n = Q_n f(H_n)e_1 ||b||$$

$$f(A)b = \frac{-1}{2i\pi} \oint_{\Gamma} f(z)(A - zI)^{-1}b \, dz$$

$$\approx \frac{-1}{2i\pi} \oint_{\Gamma} f(z)Q_{n}(H_{n} - zI)^{-1}e_{1}||b|| \, dz$$

$$= Q_{n} \frac{1}{2i\pi} \oint_{\Gamma} f(z)(zI - H_{n})^{-1} \, dz \, e_{1}||b||$$

$$= Q_{n}f(H_{n})e_{1}||b||$$

Krylov approximation of matrix functions

$$f(A)b \approx f_n = Q_n f(H_n)e_1 ||b||$$

* Video [link] *

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_m be the Krylov approximation of f(A)b. Then,

$$||f(A)b - f_m|| \le 2||b|| \min_{p \in P_{m-1}} \max_{z \in \Omega} |f(z) - p(z)|.$$

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_m be the Krylov approximation of f(A)b. Then,

$$||f(A)b - f_m|| \le 2||b|| \min_{p \in P_{m-1}} \max_{z \in \Omega} |f(z) - p(z)|.$$

Favorable situations (fast convergence):

 \bullet f(z) can be well approximated with low-order polynomials

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_m be the Krylov approximation of f(A)b. Then,

$$||f(A)b - f_m|| \le 2||b|| \min_{p \in P_{m-1}} \max_{z \in \Omega} |f(z) - p(z)|.$$

Favorable situations (fast convergence):

- \bullet f(z) can be well approximated with low-order polynomials
- $\lambda(A)$ and $\lambda(H_k)$ are clustered such that Ω can be chosen small. (Note. Not relative clustering)

Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is a normal matrix and suppose $\Omega \subset \mathbb{C}$ is a convex compact set such that $\lambda(A) \subset \Omega$. Let f_m be the Krylov approximation of f(A)b. Then,

$$||f(A)b - f_m|| \le 2||b|| \min_{p \in P_{m-1}} \max_{z \in \Omega} |f(z) - p(z)|.$$

Favorable situations (fast convergence):

- \bullet f(z) can be well approximated with low-order polynomials
- $\lambda(A)$ and $\lambda(H_k)$ are clustered such that Ω can be chosen small. (Note. Not relative clustering)

* Examples *

Application to exponential integrators PDF lecture notes 4.4.3

We already know that the initial value problem

$$y'(t) = Ay(t), \ y(0) = y_0$$

has the solution

$$y(t) = \exp(tA)y_0.$$

We already know that the initial value problem

$$y'(t) = Ay(t), y(0) = y_0$$

has the solution

$$y(t) = \exp(tA)y_0.$$

What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix functions:

$$y'(t) = g(y(t)), y(0) = y_0.$$

We already know that the initial value problem

$$y'(t) = Ay(t), y(0) = y_0$$

has the solution

$$y(t) = \exp(tA)y_0.$$

What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix functions:

$$y'(t) = g(y(t)), y(0) = y_0.$$

- Look at linear inhomogeneous ODE
- Use to approximate nonlinear ODE

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y) = g_1(y) := Ay + b$, and

$$y'(t) = Ay(t) + b = g_1(y(t)), y(0) = y_0,$$
 (1)

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y) = g_1(y) := Ay + b$, and

$$y'(t) = Ay(t) + b = g_1(y(t)), \ y(0) = y_0,$$
 (1)

has a solution explicitly given by

$$y(t) = y_0 + t\varphi(tA)g_1(y_0). \tag{2}$$

The matrix function φ is called a φ -function

$$\phi(z) = \frac{e^z - 1}{z}$$

Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side $g(y) = g_1(y) := Ay + b$, and

$$y'(t) = Ay(t) + b = g_1(y(t)), \ y(0) = y_0,$$
 (1)

has a solution explicitly given by

$$y(t) = y_0 + t\varphi(tA)g_1(y_0). \tag{2}$$

The matrix function φ is called a φ -function

$$\phi(z) = \frac{e^z - 1}{z}$$

^{*} Julia: plot phi-function *

^{*} Julia: ODE solution *

^{*} Proof (if time) *

Definition (Forward Euler exponential integrator)

Let $0 = t_0 < t_1 < \cdots < t_N$. The forward Euler exponential integrator generate the approximations $y_k \approx y(t_k)$, $k = , \dots, N$ defined as

$$y_{k+1} = y_k + h_k \varphi(h_k A_k) g(y_k)$$
 (3)

where $h_k = t_{k+1} - t_k$ and $A_k := g'(y_k)$.

Definition (Forward Euler exponential integrator)

Let $0 = t_0 < t_1 < \cdots < t_N$. The forward Euler exponential integrator generate the approximations $y_k \approx y(t_k)$, $k = , \dots, N$ defined as

$$y_{k+1} = y_k + h_k \varphi(h_k A_k) g(y_k)$$
 (3)

where $h_k = t_{k+1} - t_k$ and $A_k := g'(y_k)$.

Properties:

 Exact for the linear inhomogeneous case (1), and one step can be proven to be second order in h in the general case.

Definition (Forward Euler exponential integrator)

Let $0 = t_0 < t_1 < \cdots < t_N$. The forward Euler exponential integrator generate the approximations $y_k \approx y(t_k)$, $k = , \dots, N$ defined as

$$y_{k+1} = y_k + h_k \varphi(h_k A_k) g(y_k)$$
 (3)

where $h_k = t_{k+1} - t_k$ and $A_k := g'(y_k)$.

Properties:

- Exact for the linear inhomogeneous case (1), and one step can be proven to be second order in *h* in the general case.
- Requires the computation of $\varphi(h_k A_k)g(y_k)$ in every step. Suitable to be used with matrix functions.

We want

Trade-off of time-step h

• small $h \Rightarrow$ small Krylov error;

$$\|\varphi(hA)b-f_m\|=\mathcal{O}(h^m)$$

We want

Trade-off of time-step h

• small $h \Rightarrow$ small Krylov error;

- $\|\varphi(hA)b f_m\| = \mathcal{O}(h^m)$
- small $h \Rightarrow$ small time-stepping error; but

We want

Trade-off of time-step h

- ullet small $h\Rightarrow$ small Krylov error; $\|arphi(hA)b-f_m\|=\mathcal{O}(h^m)$
- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

We want

Trade-off of time-step h

- ullet small $h\Rightarrow$ small Krylov error; $\|arphi(hA)b-f_m\|=\mathcal{O}(h^m)$
- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error estimates and increase to specific tolerance.

We want

Trade-off of time-step h

- ullet small $h\Rightarrow$ small Krylov error; $\|arphi(hA)b-f_m\|=\mathcal{O}(h^m)$
- small $h \Rightarrow$ small time-stepping error; but
- large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error estimates and increase to specific tolerance.

More elaborate example in Lecture notes PDF.

SF2526 "Numerics for data science" [link]

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
 - ⇒ Solve many problems as preparation:
 - ▶ old exams [link]
 - selected wiki problems from previous years (2020 is coming)

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
 - ⇒ Solve many problems as preparation:
 - ▶ old exams [link]
 - selected wiki problems from previous years (2020 is coming)
- Read problem formulation carefully:
 - e.g. "Show" means "prove" (not matlab code)
- Correction more strict than wiki correction
- No calculator, notes, phones, books, etc allowed
- Zoom-protoctored exam, details are being set.
 Information will appear in Canvas

SF2526 "Numerics for data science" [link]

Exam preparation information

- Work with the material!
 - ⇒ Solve many problems as preparation:
 - ▶ old exams [link]
 - selected wiki problems from previous years (2020 is coming)
- Read problem formulation carefully:
 - e.g. "Show" means "prove" (not matlab code)
- Correction more strict than wiki correction
- No calculator, notes, phones, books, etc allowed
- Zoom-protoctored exam, details are being set.
 Information will appear in Canvas

Good luck on the exam

Please fill out the course evaluation (later)