Numerical methods for matrix functions
SF2524 - Matrix Computations for Large-scale Systems

Lecture 15: Krylov methods for matrix functions
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Problem
In this lecture we wish to compute

f(A)b,

where A € R"™" is a given large sparse matrix.
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where A € R"™" is a given large sparse matrix.

Cauchy integral definition leads to
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Problem
In this lecture we wish to compute

f(A)b,

where A € R"™" is a given large sparse matrix.

Cauchy integral definition leads to

f(A)b = (;rﬁf(z)(zl — A1 dz> b= ;i;lrj{f(z)(A —z)"tbhdz

r

How do we compute?
(A—zl)"h (*)
Note: (x) is a shifted linear system of equations:
(A—zl)x = b.

We will solve the shifted linear system using an Arnoldi method.
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The rest of this lecture
1. Arnoldi’'s method for shifted systems

2. GMRES-variant (FOM) for shifted systems
3. Use Cauchy definition = Krylov method for matrix functions

4. Application to exponential integrators
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Shift invariance of Krylov subspaces
Kn(A, b) = Kn(A — o, b) }
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Shift invariance of Krylov subspaces
Kn(A, b) = Kn(A — o, b) }

Proof idea: Find a non-singular R such that
[b, Ab, A%n, ... , A"~ 1b|R = [b,(A— cl)b,(A—cl)?b,...,(A—cl)"1b]
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Proof idea: Find a non-singular R such that
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Recall: W = VR and R non-singular and wj, ..., wp, linear independent
= span(wi, ..., Wm) =span(vi,..., vm) * Sketch on board *
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Shift invariance of Krylov subspaces

Kn(A, b) = Kn(A — o, b)

Proof idea: Find a non-singular R such that
[b, Ab, A%n, ... , A"~ 1b|R = [b,(A— cl)b,(A—cl)?b,...,(A—cl)"1b]

Recall: W = VR and R non-singular and wj, ..., wp, linear independent
= span(wi, ..., Wm) =span(vi,..., vm) * Sketch on board *
What happens with the Arnoldi factorization? * On black board *
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Arnoldi factorization for a shifted matrix
Suppose we have an Arnoldi factorization

AQm - Qm+1ﬂm (*)
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Arnoldi factorization for a shifted matrix
Suppose we have an Arnoldi factorization

AQm - Qm—i—lﬂm (*)

Lemma

Suppose Qm € C™ ™, H, € Clmt)Xm js an Arnoldi factorization (x)
associated with IKCr,(A, b). Then, for any o € C, Qn € C™™ and
H,, — 0lmt1,m is an Arnoldi factorization associated with ICp,(A — ol, b),

(A - UI)Qm = Qm—l—l(ﬂm - O'Im—l—l,m)- (**)
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Arnoldi factorization for a shifted matrix
Suppose we have an Arnoldi factorization

AQm - Qm—i—lﬂm (*)

Lemma

Suppose Qm € C™ ™, H, € Clmt)Xm js an Arnoldi factorization (x)
associated with IKCr,(A, b). Then, for any o € C, Qn € C™™ and
H,, — 0lmt1,m is an Arnoldi factorization associated with ICp,(A — ol, b),

(A — UI)Qm = Qm—l—l(ﬂm - O'Im—l—l,m)- (**)
where
1
Im+1 m — S R(m—l—l)xm.
7 1
0 --- 0
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FOM - almost GMRES for linear system

We now wish to solve linear systems:
Cx=b

(where we later set C = A—ol.)
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* Derive on black board *
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FOM - almost GMRES for linear system

We now wish to solve linear systems:

Cx=b

(where we later set C = A—ol.)

* Derive on black board *
Full Orthogonalization Method (FOM)

@ Compute an Arnoldi factorization AQ, = Qn+1H,,

o Compute z=H(1:n,1:n)\el < z = H,le

e Compute approximation X = Qnz||b||
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FOM - almost GMRES for linear system

We now wish to solve linear systems:
Cx=b
(where we later set C = A—ol.) * Derive on black board *

Full Orthogonalization Method (FOM)
@ Compute an Arnoldi factorization AQ, = Qn+1H,,
o Compute z=H(1:n,1:n)\el & z = H, e

e Compute approximation X = Qnz||b||

Only slight difference in GMRES z=H(1:n+1,1:n)\el.
Convergence very similar to GMRES.
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FOM - almost GMRES for linear system

We now wish to solve linear systems:
Cx=b
(Where we Iater set C = A — UI) * Derive on black board *

Full Orthogonalization Method (FOM)
@ Compute an Arnoldi factorization AQ, = Qn+1H,,
o Compute z=H(1:n,1:n)\el & z = H, e

e Compute approximation X = Qnz||b||

Only slight difference in GMRES z=H(1:n+1,1:n)\el.
Convergence very similar to GMRES.

Relationship with GMRES

o GMRES corresponds to (AQ,)" (A% — b) = 0 (lecture 8)
e FOM corresponds to Q] (A% — b) =0
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Now consider shifted system:

(A= ol)x, = b
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Now consider shifted system:

(A= ol)x, = b

FOM for shifted systems
1. Compute an Arnoldi factorization AQ, = Qn+1H,, from (A, b)
2. Compute zs=(H(1:n,1:n)-01)\el & z, = (H, — al) " le

3. Compute approximation X, = Q,z.||b||
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Now consider shifted system:

(A= ol)x, = b

FOM for shifted systems
1. Compute an Arnoldi factorization AQ, = Qn+1H,, from (A, b)
2. Compute zs=(H(1:n,1:n)-01)\el & z, = (H, — al) " le

3. Compute approximation X, = Q,z.||b||

Note: Step 1 is independent of o and the Step 2-3 can be done for many
o without carrying out Arnoldi method:

Xo & Xy = Qu(Hn — al) ter|| ).
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* On black board *
Cauchy integral definition and use FOM-approximation:
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* On black board *

Cauchy integral definition and use FOM-approximation:

f(A)b = ;]{f(z)(A—z/)—lbdz

f(Z)Qn( n—2l) " e|b] dz

Q

2/
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* On black board *
Cauchy integral definition and use FOM-approximation:

—1 1
F(A)D = Efi_f(z)(A—zl) bdz
-1
2i7T r

— 1 -1
- Qnm?{f(z)(zl—H,,) dz e b]

Q

f(2)Qn(Hn — zI) ey | b|| dz
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* On black board *
Cauchy integral definition and use FOM-approximation:

B -1 -1
F(A)D = Ej{f(z)(A 21y b dz
-1
2it Jr
B 1 -1
-k f e el
= an(Hn)elan

Q

f(2)Qn(Hn — zI) ey | b|| dz
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* On black board *
Cauchy integral definition and use FOM-approximation:

B -1 -1
F(A)D = Ej{f(z)(A 21y b dz
-1
2it Jr
B 1 -1
-k f e el
= an(Hn)elan

Q

f(2)Qn(Hn — zI) ey | b|| dz

Krylov approximation of matrix functions J

f(A)b = f, = Quf (Hn)er | b]|
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* On black board *
Cauchy integral definition and use FOM-approximation:

B -1 -1
F(A)D = Ej{f(z)(A 21y b dz
-1
2it Jr
B 1 -1
-k f e el
= an(Hn)elan

Q

f(2)Qn(Hn — zI) ey | b|| dz

Krylov approximation of matrix functions J

f(A)b = f, = Quf (Hn)er | b]|

* Video [link] *
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Error analysis of Krylov approximation
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Error analysis of Krylov approximation

Theorem

Suppose A € C"*" js a normal matrix and suppose 2 C C is a convex

compact set such that A\(A) C Q. Let f, be the Krylov approximation of
f(A)b. Then,

It = st = 28] it e = )

Pn_1 z€Q
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Suppose A € C"*" js a normal matrix and suppose 2 C C is a convex

compact set such that A\(A) C Q. Let f, be the Krylov approximation of
f(A)b. Then,

It = st = 28] it e = )

Pn_1 z€Q

Favorable situations (fast convergence):

@ f(z) can be well approximated with low-order polynomials
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Error analysis of Krylov approximation

Theorem

Suppose A € C"*" js a normal matrix and suppose 2 C C is a convex

compact set such that A\(A) C Q. Let f, be the Krylov approximation of
f(A)b. Then,

It = st = 28] it e = )

Pn_1 z€Q

Favorable situations (fast convergence):
@ f(z) can be well approximated with low-order polynomials

@ A\(A) and A\(Hy) are clustered such that Q can be chosen small.
(Note. Not relative clustering)
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Error analysis of Krylov approximation

Theorem

Suppose A € C"*" js a normal matrix and suppose 2 C C is a convex

compact set such that A\(A) C Q. Let f, be the Krylov approximation of
f(A)b. Then,

It = st = 28] it e = )

Pn_1 z€Q

Favorable situations (fast convergence):
@ f(z) can be well approximated with low-order polynomials

@ A\(A) and A\(Hy) are clustered such that Q can be chosen small.
(Note. Not relative clustering)

* Examples *
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Application to exponential integrators
PDF lecture notes 4.4.3
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We already know that the initial value problem

y'(t) = Ay(t), y(0) = yo

has the solution
y(t) = exp(tA)yo.
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We already know that the initial value problem

y'(t) = Ay(t), y(0) =0
has the solution
y(t) = exp(tA)yo.
What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix
functions:

y'(t) = g(y(1)), ¥(0) = yo.
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We already know that the initial value problem

y'(t) = Ay(t), y(0) = yo

has the solution
y(t) = exp(tA)yo.
What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix
functions:

y'(t) = g(y(1)), ¥(0) = yo.

@ Look at linear inhomogeneous ODE

@ Use to approximate nonlinear ODE
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Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side
g(y) = &(y) == Ay + b, and

y'(t) = Ay(t) + b= g(y(t)), ¥(0)= yo, (1)
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Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side
g(y) = &(y) == Ay + b, and

y'(t) = Ay(t) + b= g(y(t)), ¥(0)= yo, (1)

has a solution explicitly given by

y(t) = yo + to(tA)g1(v0)- (2)

The matrix function ¢ is called a ¢-function

ef—1

z

¢(z) =
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Lemma (Explicit solution linear inhomogeneous ODE)

In the special case of a linear inhomogeneous ODE with right-hand side

g(y) = &ly) := Ay + b, and
yY'(t) = Ay(t) + b= gi(y(t)). ¥(0)= o,
has a solution explicitly given by

y(t) = yo + to(tA)gi(yo)-

The matrix function ¢ is called a ¢-function

ef—1

z

¢(z) =
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* Julia: plot phi-function *
* Julia: ODE solution *
* Proof (if time) *
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Substitute in the nonlinear problem and repeat reasoning:

Numerical methods for matrix functions



Substitute in the nonlinear problem and repeat reasoning:
Definition (Forward Euler exponential integrator)

Let 0 =ty < t1 < --- < ty. The forward Euler exponential integrator
generate the approximations yx ~ y(tx), k =, ..., N defined as

Yi+1 = Yk + hieo(heAk)g (yi) (3)

where hy = tyx41 — tx and A, = g/(}/k)-
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Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let 0 =ty < t1 < --- < ty. The forward Euler exponential integrator
generate the approximations yx ~ y(tx), k =, ..., N defined as

Yi+1 = Yk + hieo(heAk)g (yi) (3)

where hy = tyy1 — ty and Ax = g'(yk).

Properties:

e Exact for the linear inhomogeneous case (1), and one step can be
proven to be second order in h in the general case.
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Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let 0 =ty < t1 < --- < ty. The forward Euler exponential integrator
generate the approximations yx ~ y(tx), k =, ..., N defined as

Yi+1 = Yk + hieo(heAk)g (yi) (3)

where hy = tyy1 — ty and Ax = g'(yk).

Properties:

e Exact for the linear inhomogeneous case (1), and one step can be
proven to be second order in h in the general case.

@ Requires the computation of p(hxAk)g(yk) in every step. Suitable to
be used with matrix functions.
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Step-length trade-off

We want

Trade-off of time-step h
@ small h = small Krylov error; lp(hA)b — frn|| = O(h™)
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@ small h = small time-stepping error; but
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Step-length trade-off

We want

Trade-off of time-step h

@ small h = small Krylov error; lp(hA)b — frn|| = O(h™)
@ small h = small time-stepping error; but
@ large h, because to reach a specific time-point quicker.
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Step-length trade-off

We want
Trade-off of time-step h

@ small h = small Krylov error; le(hA)b — frn|| = O(h™)
@ small h = small time-stepping error; but
@ large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error
estimates and increase to specific tolerance.

Numerical methods for matrix functions 14 /15



Step-length trade-off

We want
Trade-off of time-step h

@ small h = small Krylov error; le(hA)b — frn|| = O(h™)
@ small h = small time-stepping error; but

@ large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error
estimates and increase to specific tolerance.

More elaborate example in Lecture notes PDF.
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It's been a pleasure to teach this course. Thanks!
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https://www.kth.se/social/course/SF2526/
https://canvas.kth.se/courses/20087/pages/exam-information?module_item_id=267472

It's been a pleasure to teach this course. Thanks!

SF2526 “Numerics for data science” [link]
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https://www.kth.se/social/course/SF2526/
https://canvas.kth.se/courses/20087/pages/exam-information?module_item_id=267472

It's been a pleasure to teach this course. Thanks!

SF2526 “Numerics for data science” [link]

Exam preparation information
o Work with the material!
= Solve many problems as preparation:
» old exams [link]
» selected wiki problems from previous years (2020 is coming)
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https://canvas.kth.se/courses/20087/pages/exam-information?module_item_id=267472

It's been a pleasure to teach this course. Thanks!

SF2526 “Numerics for data science” [link]

Exam preparation information
@ Work with the material!
= Solve many problems as preparation:
» old exams [link]
» selected wiki problems from previous years (2020 is coming)

Read problem formulation carefully:
e.g. "Show" means “prove” (not matlab code)
Correction more strict than wiki correction

No calculator, notes, phones, books, etc allowed

Zoom-protoctored exam, details are being set.
Information will appear in Canvas
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https://canvas.kth.se/courses/20087/pages/exam-information?module_item_id=267472

It's been a pleasure to teach this course. Thanks!

SF2526 “Numerics for data science” [link]

Exam preparation information
@ Work with the material!
= Solve many problems as preparation:
» old exams [link]
» selected wiki problems from previous years (2020 is coming)

Read problem formulation carefully:
e.g. "Show" means “prove” (not matlab code)
Correction more strict than wiki correction

No calculator, notes, phones, books, etc allowed

Zoom-protoctored exam, details are being set.
Information will appear in Canvas

Good luck on the exam
Please fill out the course evaluation (later)
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