Numerical methods for matrix functions SF2524 - Matrix Computations for Large-scale Systems

Lecture 14: Specialized methods

Specialized methods

- Matrix exponential scaling-and-squaring
 - ► Matlab: expm(A)
 - ▶ Julia: exp(A)
- Matrix square root
 - Matlab: sqrtm(A)
 - Julia: sqrt(A)
- Matrix sign function

Matrix exponential PDF Lecture notes 4.3.1

* exp(A + B) properties on board *

$$\exp(A) = \exp(A/2) \exp(A/2).$$

$$\exp(A) = \exp(A/2) \exp(A/2).$$

$$\exp(A) = \exp(A/4) \exp(A/4) \exp(A/4) \exp(A/4).$$

$$\exp(A) = \exp(A/2) \exp(A/2).$$

$$\exp(A) = \exp(A/4) \exp(A/4) \exp(A/4) \exp(A/4).$$

. . .

For any j

$$\exp(A) = \left(\exp(A/2^j)\right)^{2^j}$$

$$\exp(A) = \exp(A/2) \exp(A/2).$$

$$\exp(A) = \exp(A/4) \exp(A/4) \exp(A/4) \exp(A/4).$$

. . .

For any j

$$\exp(A) = \left(\exp(A/2^j)\right)^{2^j}$$

Repeated squaring

Given $C = \exp(A/2^j)$, we can compute $\exp(A)$ with j matrix-matrix multiplications: $C_0 = C$

$$C_i = C_{i-1}^2, i = 1, \dots, j$$

We have $C_i = \exp(A)$.

$$\exp(A) = \exp(A/2) \exp(A/2).$$

$$\exp(A) = \exp(A/4) \exp(A/4) \exp(A/4) \exp(A/4).$$

. . .

For any j

$$\exp(A) = \left(\exp(A/2^j)\right)^{2^j}$$

Repeated squaring

Given $C = \exp(A/2^j)$, we can compute $\exp(A)$ with j matrix-matrix multiplications: $C_0 = C$

$$C_i = C_{i-1}^2, i = 1, \dots, j$$

We have $C_i = \exp(A)$.

* Julia: squaring property *

How to compute $\exp(A/m)$, where $m=2^j$ for large m?

How to compute $\exp(A/m)$, where $m=2^j$ for large m? Note: $\left\|\frac{1}{m}A\right\| \ll 1$ when m is large.

How to compute $\exp(A/m)$, where $m = 2^j$ for large m?

Note: $\left\|\frac{1}{m}A\right\| \ll 1$ when m is large.

Use approximation of matrix exponential which is good close to origin.

How to compute $\exp(A/m)$, where $m = 2^j$ for large m?

Note: $\left\|\frac{1}{m}A\right\| \ll 1$ when m is large.

Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive

Use Truncated Taylor with expansion $\mu=0$

$$\exp(B) \approx I + \frac{1}{1!}B + \cdots + \frac{1}{N!}B^N$$

How to compute $\exp(A/m)$, where $m=2^j$ for large m?

Note: $\left\|\frac{1}{m}A\right\| \ll 1$ when m is large.

Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive

Use Truncated Taylor with expansion $\mu=0$

$$\exp(B) \approx I + \frac{1}{1!}B + \cdots + \frac{1}{N!}B^N$$

From Theorem 4.1.2:

Error
$$\sim ||B||^N = ||A/m||^N = ||A||^N/m^N$$

$$\Rightarrow$$
 fast if $m \gg ||A||$

Use a rational approximation of matrix expoential:

$$\exp(B) \approx N_{pq}(B) D_{pq}(B)^{-1}$$

where $N_{pq} \in P_p$ and $D_{pq} \in P_q$.

Use a rational approximation of matrix expoential:

$$\exp(B) \approx N_{pq}(B) D_{pq}(B)^{-1}$$

where
$$N_{pq} \in P_p$$
 and $D_{pq} \in P_q$.

$$\exp(z) pprox rac{\sum_{i=0}^{p} lpha_i z^i}{\sum_{i=0}^{q} eta_i z^i}$$

Use a rational approximation of matrix expoential:

$$\exp(B) \approx N_{pq}(B)D_{pq}(B)^{-1}$$

where $N_{pq} \in P_p$ and $D_{pq} \in P_q$.

$$\exp(z) pprox rac{\sum_{i=0}^{p} \alpha_i z^i}{\sum_{i=0}^{q} \beta_i z^i}$$

More precisely, for Padé approximation of exponential we have

$$N_{pq}(z) = \sum_{k=0}^{p} \frac{(p+q-k)!p!}{(p+q)!k!(p-k)!} z^{k}$$

$$D_{pq}(z) = \sum_{k=0}^{q} \frac{(p+q-k)!q!}{(p+q)!k!(q-k)!} (-z)^{k}.$$

Parameters p and q can be chosen such that a specific error can be guaranteed.

Use a rational approximation of matrix expoential:

$$\exp(B) \approx N_{pq}(B) D_{pq}(B)^{-1}$$

where $N_{pq} \in P_p$ and $D_{pq} \in P_q$.

$$\exp(z) pprox rac{\sum_{i=0}^{p} lpha_{i} z^{i}}{\sum_{i=0}^{q} eta_{i} z^{i}}$$

More precisely, for Padé approximation of exponential we have


```
Input: \delta > 0 and A \in \mathbb{R}^{n \times n}
Output: F = \exp(A + E) where ||E||_{\infty} \le \delta ||A||_{\infty}.
begin
    j = \max(0, 1 + \operatorname{floor}(\log_2(\|A\|_{\infty})))
    A = A/2^{j}
    Let q be the smallest non-negative integer such that
     \varepsilon(q,q) \leq \delta.
    D = I: N = I: X = I: c = 1
    for k = 1 : q do
        c = c(q - k + 1)/((2q - k + 1)k)
         X = AX; N = N + cX; D = D + (-1)^k cX
    end
    Solve DF = N for F
    for k = 1 : j do
     F = F^2
    end
end
```

Algorithm 2: Scaling-and-squaring for the matrix exponential

In general, rational functions is a "richer set of functions".

In general, rational functions is a "richer set of functions". Padé approximant (p,q) for exponential has an error of order p+q+1.

In general, rational functions is a "richer set of functions". Padé approximant (p,q) for exponential has an error of order p+q+1.

A note on computational cost

- Matrix-vector product: $\mathcal{O}(n^2)$ (Exploit in next lecture for f(A)b)
- Matrix addition: $\mathcal{O}(n^2)$
- Scalar times matrix: $\mathcal{O}(n^2)$
- Matrix-matrix product: $\mathcal{O}(n^3)$
- Matrix inverse: $\mathcal{O}(n^3)$

In general, rational functions is a "richer set of functions". Padé approximant (p, q) for exponential has an error of order p + q + 1.

A note on computational cost

- Matrix-vector product: $\mathcal{O}(n^2)$ (Exploit in next lecture for f(A)b)
- Matrix addition: $\mathcal{O}(n^2)$
- Scalar times matrix: $\mathcal{O}(n^2)$
- Matrix-matrix product: $\mathcal{O}(n^3)$
- Matrix inverse: $\mathcal{O}(n^3)$

Padé approximants for exponential (typically p = q = 13)

$$N_{pp}(B) = D_{pp}(-B)$$
 which gives that

$$\bullet \ N_{pp}(B) = V_{\text{even}}(B) + U_{\text{odd}}(B)$$

(13 mat-mat

•
$$D_{pp}(B) = V_{\text{even}}(B) - U_{\text{odd}}(B)$$

+ 1 inverse)

In general, rational functions is a "richer set of functions". Padé approximant (p,q) for exponential has an error of order p+q+1.

A note on computational cost

- Matrix-vector product: $\mathcal{O}(n^2)$ (Exploit in next lecture for f(A)b)
- Matrix addition: $\mathcal{O}(n^2)$
- Scalar times matrix: $\mathcal{O}(n^2)$
- Matrix-matrix product: $\mathcal{O}(n^3)$
- Matrix inverse: $\mathcal{O}(n^3)$

Padé approximants for exponential (typically p = q = 13)

 $N_{pp}(B) = D_{pp}(-B)$ which gives that

•
$$N_{pp}(B) = \hat{V}_{even}(B^2) + B \cdot \hat{U}_{odd}(B^2)$$

(7 mat-mat

•
$$D_{pp}(B) = \hat{V}_{even}(B^2) - B \cdot \hat{U}_{odd}(B^2)$$

+ 1 inverse)

Result: High-degree approximation can be evaluated cheaper than Taylor.

Matrix square root PDF Lecture notes 4.3.2

Suppose

$$\lambda(A) \cap (-\infty, 0] = \emptyset$$

Suppose

$$\lambda(A) \cap (-\infty, 0] = \emptyset$$

Then, with $f(z) = \sqrt{z}$ the matrix function

$$F = f(A)$$

is well-defined with the Jordan definition or Cauchy definition.

Suppose

$$\lambda(A) \cap (-\infty, 0] = \emptyset$$

Then, with $f(z) = \sqrt{z}$ the matrix function

$$F = f(A)$$

is well-defined with the Jordan definition or Cauchy definition. Moreover,

$$F^2 = A$$

$$g(x) = x^2 - a = 0$$

$$g(x) = x^2 - a = 0$$

Simplifies to

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = \ldots = \frac{1}{2}(x_k + ax_k^{-1})$$

$$g(x) = x^2 - a = 0$$

Simplifies to

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = \ldots = \frac{1}{2}(x_k + ax_k^{-1})$$

Newton's method for matrix square root (Newton-SQRT)

$$X_0 = A$$

 $X_{k+1} = \frac{1}{2}(X_k + AX_k^{-1})$

$$g(x) = x^2 - a = 0$$

Simplifies to

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = \ldots = \frac{1}{2}(x_k + ax_k^{-1})$$

Newton's method for matrix square root (Newton-SQRT)

$$X_0 = A$$

 $X_{k+1} = \frac{1}{2}(X_k + AX_k^{-1})$

* Iulia demo *

$$g(x) = x^2 - a = 0$$

Simplifies to

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = \ldots = \frac{1}{2}(x_k + ax_k^{-1})$$

Newton's method for matrix square root (Newton-SQRT)

$$X_0 = A$$

 $X_{k+1} = \frac{1}{2}(X_k + AX_k^{-1})$

^{*} Julia demo *

^{*} Prove equivalence with Newton's method for $A = A^T$ *

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof).

* Julia demo *

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof).

* Julia demo * Better in terms of stability:

Denman-Beavers algorithm

$$X_0 = A$$

$$Y_0 = I$$

$$X_{k+1} := \frac{1}{2}(X_k + Y_k^{-1})$$

$$Y_{k+1} := \frac{1}{2}(Y_k + X_k^{-1})$$

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). * $_{\text{Julia demo}}$ * Better in terms of stability:

Denman-Beavers algorithm

$$X_0 = A$$

$$Y_0 = I$$

$$X_{k+1} := \frac{1}{2}(X_k + Y_k^{-1})$$

$$Y_{k+1} := \frac{1}{2}(Y_k + X_k^{-1})$$

Properties of Denman-Beavers:

 Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic

^{*} proof on black board *

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof). * Julia demo * Better in terms of stability:

Denman-Beavers algorithm

$$X_0 = A$$

$$Y_0 = I$$

$$X_{k+1} := \frac{1}{2}(X_k + Y_k^{-1})$$

$$Y_{k+1} := \frac{1}{2}(Y_k + X_k^{-1})$$

Properties of Denman-Beavers:

 Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic

* proof on black board *

Much less sensitive to round-off than Newton-SQRT

Unfortunately: Newton's method for matrix square root is numerically unstable. Commutativity is important (not only our proof).

* Julia demo * Better in terms of stability:

Denman-Beavers algorithm

$$X_0 = A$$

$$Y_0 = I$$

$$X_{k+1} := \frac{1}{2}(X_k + Y_k^{-1})$$

$$Y_{k+1} := \frac{1}{2}(Y_k + X_k^{-1})$$

Properties of Denman-Beavers:

 Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic

- * proof on black board *
- Much less sensitive to round-off than Newton-SQRT
- One step requires two matrix inverses

Matrix sign function PDF Lecture notes 4.3.3

Scalar-valued sign function

$$\operatorname{sign}(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Scalar-valued sign function

$$\operatorname{sign}(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Now: Matrix version.

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

For all cases except x = 0:

$$|x| = \sqrt{x^2}$$

 $sign(x) = \frac{|x|}{x} = \frac{\sqrt{x^2}}{x}$

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

For all cases except x = 0:

$$|x| = \sqrt{x^2}$$

 $sign(x) = \frac{|x|}{x} = \frac{\sqrt{x^2}}{x}$

Definition matrix sign

$$sign(A) = \sqrt{A^2}A^{-1}$$

Compute directly

$$\mathsf{sign}(A) = \sqrt{A^2}A^{-1}$$

Compute directly

$$sign(A) = \sqrt{A^2}A^{-1}$$

We can do better: Combine Newton-SQRT with A^2 and A^{-1}

Compute directly

$$sign(A) = \sqrt{A^2}A^{-1}$$

We can do better: Combine Newton-SQRT with A^2 and A^{-1}

Derivation based on defining $S_k = A^{-1}X_k$ where X_k Newton-SQRT for $\sqrt{A^2\cdots}$

Compute directly

$$sign(A) = \sqrt{A^2}A^{-1}$$

We can do better: Combine Newton-SQRT with A^2 and A^{-1}

Derivation based on defining $S_k = A^{-1}X_k$ where X_k Newton-SQRT for $\sqrt{A^2\cdots}$

Matrix sign iteration

$$S_0 = A$$

 $S_{k+1} = \frac{1}{2}(S_k + S_k^{-1})$

Convergence

• Local quadratic convergence follows from Newton equivalence.

Convergence

- Local quadratic convergence follows from Newton equivalence.
- We even have global convergence ...

Convergence

- Local quadratic convergence follows from Newton equivalence.
- We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose $A \in \mathbb{R}^{n \times n}$ has no eigenvalues on the imaginary axis. Let S = sign(A), and S_k be generated by Sign iteration. Let

$$G_k := (S_k - S)(S_k + S)^{-1}.$$
 (1)

Then,

- $S_k = S(I + G_k)(I G_k)^{-1}$ for all k,
- $G_k \to 0$ as $k \to \infty$,
- $S_k \to S$ as $k \to \infty$, and

•

$$||S_{k+1} - S|| \le \frac{1}{2} ||S_k^{-1}|| ||S_k - S||^2.$$
 (2)