Numerical methods for matrix functions
SF2524 - Matrix Computations for Large-scale Systems

Lecture 14: Specialized methods

Numerical methods for matrix functions

Specialized methods

@ Matrix exponential - scaling-and-squaring
Matlab: expm(A)
Julia: exp(4)

@ Matrix square root

Matlab: sqrtm(A)
Julia: sqrt(A)

@ Matrix sign function

Numerical methods for matrix functions 2/17

Matrix exponential
PDF Lecture notes 4.3.1

Numerical methods for matrix functions

* exp(A + B) properties on board *

merical methods for matrix functions

From basic properties of matrix functions: * exp(A + B) properties on board *

exp(A) = exp(A/2) exp(A/2).

Numerical methods for matrix functions

From basic properties of matrix functions: * exp(A + B) properties on board *
exp(A) = exp(A/2) exp(A/2).

Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).

Numerical methods for matrix functions 4/17

From basic properties of matrix functions: * exp(A + B) properties on board *
exp(A) = exp(A/2) exp(A/2).

Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).

i:.o.r any j ‘
exp(A) = (exp(A/2j))2j

Numerical methods for matrix functions 4/17

From basic properties of matrix functions: * exp(A + B) properties on board *
exp(A) = exp(A/2) exp(A/2).
Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).
For any j ‘
)]
exp(A) = (exp(A/QJ))

Repeated squaring

Given C = exp(A/2/), we can compute exp(A) with j matrix-matrix
multiplications: Cy = C

We have C; = exp(A).
4/17

From basic properties of matrix functions: * exp(A + B) properties on board *
exp(A) = exp(A/2) exp(A/2).
Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).
For any j ‘
)]
exp(A) = (exp(A/QJ))

Repeated squaring

Given C = exp(A/2/), we can compute exp(A) with j matrix-matrix
multiplications: Cy = C

We have C = exp(A). * Julia: squaring property *
J

v

Numerical methods for matrix functions 4/17

Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?

Numerical methods for matrix functions

Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?
Note: ||LA| < 1 when m is large.

Numerical methods for matrix functions 5/17

Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?
Note: ||LA| < 1 when m is large.
Use approximation of matrix exponential which is good close to origin.

Numerical methods for matrix functions 5/17

Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?

Note: ||LA| < 1 when m is large.

Use approximation of matrix exponential which is good close to origin.
Idea 0: Naive

Use Truncated Taylor with expansion p =0

1 1
exp(B)%I—i—ﬁB—i—---—i—mBN

Numerical methods for matrix functions 5/17

Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?
Note: ||1A|| <1 when m is large.
Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive
Use Truncated Taylor with expansion p =0

1 1 _n
exP(B)N/—i-ﬁB-i-"'-i-mB
From Theorem 4.1.2:
Error ~ ||B|Y = |A/m|" = | A|N/m"

= fast if m> ||Al

Numerical methods for matrix functions 5/17

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

exp(B) ~ Npq(B)DPq(B)_l

where Npg € Py and Dpg € Py.

Numerical methods for matrix functions 6/17

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:
exp(B) ~ Npg(B)Dpqg(B) ™"

~ 2o a;z’

where Npg € P, and Dpg € Py, exp(z) ~ St g
i=0 "1

Numerical methods for matrix functions 6/17

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

exp(B) ~ Npq(B)Dpq(B) ™"
where N,, € P, and D,, € P exp(z) ~ 70z
Pq 2 Pq q: ST
More precisely, for Padé approximation of exponential we have

& (p+q—k)p!
foelz) = ;(p+q)'k'(p k)! 4

(p+q—k)q! (—2)F
— (p+ q)tkl(q — k)! '

IM-1

qu(z) =

Parameters p and g can be chosen such that a specific error can be
guaranteed.

Numerical methods for matrix functions 6/17

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:
exp(B) ~ Npg(B)Dpqg(B) ™"

- Zf: oz
where Npq € Py and Dpg € Py. exp(z) ~ Zq:(;’ﬁ
More precisely, for Padé approximation of exponential we have

<~ (b+a—Kklp .

10°

Relative error
=
ES

Parame
guarant

w

oo
oo
LAYy,

]

|

|

o
T

10716 S I I B T
0 010203040506 070809

z &

(a) Error in Padé approximation (b) |Rpp(aA)—exp(aA)|/|exp(ad)]

Numerical methods for matrix functions 6/17

Input: § >0 and A € R"*"
Output: F = exp(A + E) where ||E| o <A co-

begin
j=max(0,1 + floor(log, (| A]e)))
A=A
Let g be the smallest non-negative integer such that
e(4,9) <9.
D=I;N=LX=Ic=1
fork=1:qdo

c=c(qg-k+1)/((29-k+1)k)
X=AX;N=N+cX;D=D+(-1)kcX

end
Solve DF = N for I
fork=1:jdo
| F=F2
end
end

Algorithm 2: Scaling-and-squaring for the matrix exponential

Numerical methods for matrix functions 7/17

Why rational approximation?

Numerical methods for matrix functions

Why rational approximation?

In general, rational functions is a “richer set of functions”.

Numerical methods for matrix functions 8/17

Why rational approximation?

In general, rational functions is a “richer set of functions”.
Padé approximant (p, q) for exponential has an error of order p + g + 1.

Numerical methods for matrix functions 8/17

Why rational approximation?

In general, rational functions is a “richer set of functions”.

Padé approximant (p, q) for exponential has an error of order p + g + 1.
A note on computational cost

Matrix-vector product: O(n?) (Exploit in next lecture for f(A)b)
Matrix addition: O(n?)

Scalar times matrix: O(n?)

Matrix-matrix product: O(n%)

Matrix inverse: O(n3)

Numerical methods for matrix functions 8/17

Why rational approximation?

In general, rational functions is a “richer set of functions”.
Padé approximant (p, q) for exponential has an error of order p + g + 1.

A note on computational cost
@ Matrix-vector product: O(n?) (Exploit in next lecture for f(A)b)
Matrix addition: O(n?)
Scalar times matrix: O(n?)
Matrix-matrix product: O(n%)
Matrix inverse: O(n3)

Padé approximants for exponential (typically p = g = 13)

Npp(B) = Dpp(—B) which gives that
@ Npp(B) = Veven(B) + Usdd(B) (13 mat-mat
@ Dpp(B) = Veven(B) — Uosdd(B) + 1 inverse)

Numerical methods for matrix functions 8/17

Why rational approximation?

In general, rational functions is a “richer set of functions”.
Padé approximant (p, q) for exponential has an error of order p + g + 1.

A note on computational cost
@ Matrix-vector product: O(n?) (Exploit in next lecture for f(A)b)
e Matrix addition: O(n?)
o Scalar times matrix: O(n?)
e Matrix-matrix product: O(n?)

e Matrix inverse: O(n?)

Padé approximants for exponential (typically p = g = 13)
Npp(B) = Dpp(—B) which gives that

0 Npp(B) = Veyen(B?) + B - Unga(B?) (7 mat-mat
0 Dpp(B) = Veyen(B?) — B - Uoga(B?) + 1 inverse)

Result: High-degree approximation can be evaluated cheaper than Taylor.

Numerical methods for matrix functions 8/17

Matrix square root
PDF Lecture notes 4.3.2

Numerical methods for matrix functions

Suppose
AA) N (—00,0] =0

Numerical methods for matrix functions

Suppose
AA) N (—00,0] =0

Then, with f(z) = \/z the matrix function
F =f(A)

is well-defined with the Jordan definition or Cauchy definition.

Numerical methods for matrix functions 10/17

Suppose
AA) N (—00,0] =0

Then, with f(z) = \/z the matrix function
F=1f(A)
is well-defined with the Jordan definition or Cauchy definition. Moreover,

F2=A

Numerical methods for matrix functions 10/17

Newton's method for scalar-valued equation:

gx)=x*-a=0

Numerical methods for matrix functions

Newton's method for scalar-valued equation:

Simplifies to

Numerical methods for matrix functions 11/17

Newton's method for scalar-valued equation:
— 2 —
gx)=x"—a=0
Simplifies to

g(x«) _ —lx ax 1
g’(xk)_"'_Q(k+)

Xk+1 = Xk —

Newton's method for matrix square root (Newton-SQRT)

Xo = A
1 _
Xer1 = E(Xk +AX)

Numerical methods for matrix functions 11/17

Newton's method for scalar-valued equation:
— 2 —
gx)=x"—a=0
Simplifies to

g(x«) _ —lx ax 1
g’(xk)_"'_Q(k+)

Xk+1 = Xk —

Newton's method for matrix square root (Newton-SQRT)

Xo = A
1 _
Xer1 = E(Xk +AX)

* Julia demo *

Numerical methods for matrix functions 11/17

Newton's method for scalar-valued equation:
— 2 —
gx)=x"—a=0
Simplifies to

g(x) _
g’ (xk)

1 _
Xk+1 = Xk — L= §(xk+axk 1)

Newton's method for matrix square root (Newton-SQRT)

Xo = A
1 _
Xer1 = E(Xk +AX)

* Julia demo *

* Prove equivalence with Newton's method for A = AT *

Numerical methods for matrix functions

Unfortunately: Newton's method for matrix square root is numerically
unstable. Commutativity is important (not only our proof). * Julia demo *

Numerical methods for matrix functions 12/17

Unfortunately: Newton's method for matrix square root is numerically

unstable. Commutativity is important (not only our proof).
Better in terms of stability:

* Julia demo *

Denman-Beavers algorithm

X, = A
Yo = |
L -1
Xip1 = §(Xk+yk)
1 _
Yig1 = 5(Yk+xk1)

Numerical methods for matrix functions 12/17

Unfortunately: Newton's method for matrix square root is numerically
unstable. Commutativity is important (not only our proof).
Better in terms of stability:

* Julia demo *

Denman-Beavers algorithm

X = A
Yo = |
1 -1
Xk+1 = §(Xk+yk)
1 _
Y1 = E(Yk—i—Xkl)

Properties of Denman-Beavers:

@ Equivalent to Newton-SQRT in exact arithmetic, but very different in
finite arithmetic

* proof on black board *

Numerical methods for matrix functions 12/17

Unfortunately: Newton's method for matrix square root is numerically

unstable. Commutativity is important (not only our proof).
Better in terms of stability:

* Julia demo *

Denman-Beavers algorithm

X, = A
Yo = |
il -1
Xk+1 = §(Xk+yk)
1 -1
Y1 = E(Yk—l-Xk)

Properties of Denman-Beavers:

@ Equivalent to Newton-SQRT in exact arithmetic, but very different in
finite arithmetic

* proof on black board *

@ Much less sensitive to round-off than Newton-SQRT

Numerical methods for matrix functions 12/17

Unfortunately: Newton's method for matrix square root is numerically
unstable. Commutativity is important (not only our proof).
Better in terms of stability:

* Julia demo *

Denman-Beavers algorithm

X, = A
Yo = |
il -1
Xk+1 = §(Xk+yk)
1 -1
Y1 = E(Yk—l-Xk)

Properties of Denman-Beavers:
@ Equivalent to Newton-SQRT in exact arithmetic, but very different in
finite arithmetic
* proof on black board *
@ Much less sensitive to round-off than Newton-SQRT
@ One step requires two matrix inverses

Numerical methods for matrix functions 12/17

Matrix sign function
PDF Lecture notes 4.3.3

Numerical methods for matrix functions

Scalar-valued sign function

-1 ifx<0
sign(x) =<0 ifx=0
1 if x>0
2
1
0 °
1
-2
S0 -5 0 5 10

Numerical methods for matrix functions 14 /17

Scalar-valued sign function

-1 ifx<0
sign(x) =<0 ifx=0
1 if x>0
2
1
0 °
1
-2
S0 -5 0 5 10

Now: Matrix version.

Numerical methods for matrix functions 14 /17

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control
(Riccati equation)

Numerical methods for matrix functions

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control
(Riccati equation)

For all cases except x = 0:
x| = VX2

sign(x) = — =

Numerical methods for matrix functions 15 /17

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control
(Riccati equation)

For all cases except x = 0:

x| = vx?

: x| VX2
sign(x) = — = —
X X
Definition matrix sign
sign(A) = VA2A™L J

Numerical methods for matrix functions 15 /17

Naive method
Compute directly

sign(A) = VA2A™!

Numerical methods for matrix functions

Naive method
Compute directly

sign(A) = VA2A™!

We can do better: Combine Newton-SQRT with A% and A~1

Numerical methods for matrix functions

Naive method
Compute directly

sign(A) = VA2A™!

We can do better: Combine Newton-SQRT with A% and A~1

Derivation based on defining S, = A~1X, where X, Newton-SQRT for
VA2 ... * On black board *

Numerical methods for matrix functions 16 /17

Naive method
Compute directly

sign(A) = VA2A™!

We can do better: Combine Newton-SQRT with A% and A~1

Derivation based on defining S, = A~1X, where X, Newton-SQRT for
VA2 ... * On black board *

Matrix sign iteration

So =

Skir = =(Sk+ S5

Nl = D>

Numerical methods for matrix functions 16 /17

Convergence

@ Local quadratic convergence follows from Newton equivalence.

Numerical methods for matrix functions

Convergence

@ Local quadratic convergence follows from Newton equivalence.

@ We even have global convergence ...

Numerical methods for matrix functions 17 /17

Convergence

@ Local quadratic convergence follows from Newton equivalence.

@ We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose A € R"*" has no eigenvalues on the imaginary axis. Let
S =sign(A), and Sy be generated by Sign iteration. Let

Gk = (Sk—S)(Sk +S)7L. (1)
Then,

o Sk =S(I + Gy)(I — Gx)7 for all k,

@ Gy —0ask— oo,

@ S, — S as k— o, and

1,
I1k+1 = SIT < SN, ISk = SII% ()

Numerical methods for matrix functions

