VEKTORANALYS

HT 2021
 CELTE/CENMI

ED1110

SOME SPECIAL VECTOR FIELDS

 AND
LAPLACE AND POISSON EQUATIONS

Kursvecka 6
Kapitel 16
Avsnitt: målproblem (metod 2), 17.1, 17.2, 17.3
Avsnitt 17.5 (inte bevisen)

THIS WEEK

- Special vektor field
- Point source
- dipole
- Line source
- Laplace and Poisson equations
- Simple solutions in case of planar, cilindrical or spherical symmetry
- Boundary conditions: Neumann and Dirichlet
- Uniqueness theorem for Poisson's equation
- Helmotz theorem (home assignment)

Connections with previous and next topics

- Special vektor field
- Point source \rightarrow flux, Gauss' theorem, Gauss law
- Dipole \rightarrow potential, gradient, nablaräkning
- Line source \rightarrow circulation, nablaräkning, Ampere’s law
- Laplace and Poisson equations
\rightarrow Nablaräkning
\rightarrow Laplacian
\rightarrow Electrostatic field and potential

TARGET PROBLEM

Some example of vector field sources in nature

TARGET PROBLEM

- Point source (punktkällan)

It is a single identifiable localized source with negligible extent.
In some particular conditions,
(for example: 3D space, the flux is homogenous in all directions, no absorption and no loss...) the field produced by a point source decreases with r^{2}

- Dipole source (dipolskällan)

Two sources with opposite charge (i.e. a source and a sink) separated by a distance d.

- Vortex (virveltråden)

The velocity field in a water vortex Magnetic field around a straight wire The field decrease with r

POINT SOURCE

A single identifiable localized source with negligible extent.
Let's calculate the velocity field of the water that flows from a thin pipe into a large pool.

Assumptions:
1- The source is homogeneous in time i.e. the flow of the water from the pipe is constant: $F=$ Volumeltime $=$ constant

2- The emission is homogeneous in all directions

3- No absorption, no losses
Then:
$\left.\begin{array}{l}F=\bar{S} \cdot \bar{v} \\ \bar{S}=4 \pi r^{2} \hat{e}_{r}\end{array}\right\} \Rightarrow \bar{v}=\frac{F}{4 \pi r^{2}} \hat{e}_{r}$

In a 3D space, the vector field generated by a point source is:

$$
\bar{A}(\bar{r})=\frac{q}{r^{2}} \hat{e}_{r}
$$

POINT SOURCE

The vector field generated by a point source located in the origin is:

$$
\bar{A}(\bar{r})=\frac{q}{r^{2}} \hat{e}_{r}
$$

When the source is not in the origin:

$$
\bar{A}(\bar{r})=q \frac{\bar{r}-\bar{r}^{\prime}}{|\bar{r}-\bar{r}|^{\prime}}
$$

$$
\text { where } \bar{r}^{\prime} \text { is the position of the source }
$$

- Electrostatic field produced by a point charge:

$$
\bar{E}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{e}_{r} \quad \text { with } \quad q=\frac{Q}{4 \pi \varepsilon_{0}}
$$

- Gravitational field produced by a mass M :

$$
\bar{g}=-G M \frac{1}{r^{2}} \hat{e}_{r} \quad \text { with } \quad q=-G M
$$

POINT SOURCE

The flux produced by a point source through a closed surface S (with S boundary of the volume V) is:

$$
\oiiint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}= \begin{cases}0 & \text { If the source is outside } V \\ 4 \pi q & \text { If the source is inside } V\end{cases}
$$

PROOF

1. The origin is outside V

In V the field is continuously differentiable, so we can apply the Gauss' theorem:

$$
\begin{aligned}
& \oiint \int_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=\iiint_{V} d i v\left(\frac{q}{r^{2}} \hat{e}_{r}\right) d V \\
& \operatorname{div}\left(\frac{q}{r^{2}} \hat{e}_{r}\right)=\quad \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{q}{r^{2}}\right)=0 \\
& \Rightarrow \oiint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=0
\end{aligned}
$$

2. The origin is inside \mathbf{V}

The field is not continuous in V , since the origin is a singular point. So the Gauss' theorem cannot be applied.

But we can divide V into two volumes:

$$
V=V_{0}+V_{\varepsilon}
$$

V_{ε} is a "small" sphere with radius ε with centre on the source (the origin). V_{o} is the remaining part of V

$$
\iint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=\iint_{S+S_{\varepsilon}-S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=
$$

$$
\underset{\substack{\text { Gaussitherem: } \\ \text { and } \\ \text { condiont heo originin }}}{ } \iint_{S+S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}+\iint_{-S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=
$$

THE POTENTIAL OF A POINT SOURCE

The potential from a point source is: $\phi=-\frac{q}{r}+$ const.
In fact: $\operatorname{grad} \phi=\frac{\partial \phi}{\partial r} \hat{e}_{r}+\underbrace{\frac{1}{r}}_{=0} \frac{\partial \phi}{\partial \theta} \hat{e}_{\theta}+\frac{1}{r \sin \theta} \underbrace{\frac{\partial \phi}{\partial \varphi}}_{=0} \hat{e}_{\varphi}=-q \frac{\partial}{\partial r}\left(\frac{1}{r}\right) \hat{e}_{r}=\frac{q}{r^{2}} \hat{e}_{r}$

ELECTROSTATIC FIELD FROM A POINT SOURCE

The electrostatic field from a point source is $\bar{E}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{e}_{r}$
The electrostatic potential is defined as: $\quad \bar{E}=-\operatorname{grad} \phi_{E}$
Therefore, the electrostatic potential is: $\quad \phi_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$
The flux of the electric field is: $\iint_{S} \bar{E} \cdot d \bar{S}=\frac{Q}{\varepsilon_{0}}$
where Q is the total charge inside S GAUSS' LAW

DIPOLE SOURCE

Two identical but opposite sources (i.e. a source and a sink) separated by a distance d.
Assume that the origin is in the middle between the positive and the negative charge.

$$
\begin{aligned}
& \text { If } \quad r \gg d \\
& r \approx r_{+} \approx r_{-} \\
& r_{-}-r_{+} \approx d \cos \theta
\end{aligned}
$$

The potential due to the dipole is:

$$
\phi(\bar{r})=\frac{q}{r_{+}}+\frac{-q}{r_{-}}=q \frac{r_{-}-r_{+}}{r_{-} r_{+}} \approx q \frac{d \cos \theta}{r^{2}}=q \frac{\bar{d} \cdot \bar{r}}{r^{3}}
$$

Ideal dipole: $q d=$ constant
The dipole moment is defined as: $\quad \bar{p} \equiv q \bar{d}$

The field generated by the dipole is:

$$
\bar{E}(\bar{r})=-\operatorname{grad} \phi=-\operatorname{grad}\left(\frac{\bar{p} \cdot \bar{r}}{r^{3}}\right)=
$$

DIPOLE SOURCE

What could be the smartest way to calculate $\operatorname{grad}\left(\frac{\bar{p} \cdot \bar{r}}{r^{3}}\right)$?
a) direct calculation of thegradient using a Cartesian coordinate system
b) direct calculation of thegradient using a spherical coordinate system
c) Using the nabla identity $\nabla(\Phi \Psi)=\nabla(\Phi) \Psi+\Phi \nabla(\Psi)$
d) Using all the three options above

$$
\text { Poll } 9
$$

The field generated by the dipole is:

$$
\bar{E}(\bar{r})=-\operatorname{grad} \phi=-\operatorname{grad}\left(\frac{\bar{p} \cdot \bar{r}}{r^{3}}\right)=
$$

DIPOLE SOURCE

Two identical but opposite sources (i.e. a source and a sink) separated by a distance d.
Assume that the origin is in the middle between the positive and the negative charge.

$$
\begin{aligned}
& \text { If } \quad r \gg d \\
& r \approx r_{+} \approx r_{-} \\
& r_{-}-r_{+} \approx d \cos \theta
\end{aligned}
$$

The potential due to the dipole is:

$$
\phi(\bar{r})=\frac{q}{r_{+}}+\frac{-q}{r_{-}}=q \frac{r_{-}-r_{+}}{r_{-} r_{+}} \approx q \frac{d \cos \theta}{r^{2}}=q \frac{\bar{d} \cdot \bar{r}}{r^{3}}
$$

Ideal dipole: $q d=$ constant
The dipole moment is defined as: $\quad \bar{p} \equiv q \bar{d}$
The field generated by the dipole is:

$$
\bar{E}(\bar{r})=-\operatorname{grad} \phi=-\operatorname{grad}\left(\frac{\bar{p} \cdot \bar{r}}{r^{3}}\right)=-\frac{\bar{p}}{r^{3}}+\frac{3(\bar{p} \cdot \bar{r}) \bar{r}}{r^{5}}
$$

$\phi(\bar{r})=\frac{\bar{p} \cdot \bar{r}}{r^{3}}$
$\bar{E}(\bar{r})=-\frac{\bar{p}}{r^{3}}+\frac{3(\bar{p} \cdot \bar{r}) \bar{r}}{r^{5}}$

DIPOLE SOURCE (example)

$$
\begin{aligned}
& \phi(\bar{r})=\frac{q}{r_{+}}-\frac{q}{r_{-}} \\
& \phi(\bar{r})=q \frac{d \cos \theta}{r^{2}}
\end{aligned}
$$

VORTEX (or similar fields)

Example: The velocity field in a water vortex, the magnetic field around a straight wire...
The vector field generated by a vortex has the shape:

$$
\bar{A}(\bar{r})=\frac{k}{\rho} \hat{e}_{\varphi}
$$

The circulation of this vector field is

$$
\oint_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=2 \pi k N
$$

where N is number of turns of L around the z-axis
N is positive if the turn is along $+L$
N is negative if the turn is along - L

PROOF

The field is singular on the z-axis.
So the Stokes' theorem cannot be applied directly.
We consider a circular path L_{ε} with radius ε

$$
\begin{aligned}
& \int_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=\int_{L+L_{\varepsilon}-L_{\varepsilon}+L_{1}-L_{1}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=\int_{L+L_{\varepsilon}+L_{1}-L_{1}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}+\int_{-L_{\varepsilon}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}= \\
& \iint_{S} \operatorname{rot}\left(\frac{k}{\rho} \hat{e}_{\varphi}\right) \cdot d \bar{S}+\int_{-L_{\varepsilon}} \frac{k}{\rho} \hat{e}_{\varphi_{\varphi^{\prime}}, \prime \prime}^{\prime \prime} d \bar{r}=\int_{0}^{2 \pi} \frac{k}{\varepsilon} \underbrace{\varepsilon \hat{e}_{\varphi} \cdot \hat{e}_{\varphi} d \varphi}_{d \bar{r}=-\varepsilon \hat{e}_{\varphi} d \varphi}=2 \pi k \\
& \text { Closed path that does not contain the z-axis. }
\end{aligned}
$$

WHICH STATEMENT IS WRONG?

1- The vector field $\frac{q}{r^{2}} \hat{e}_{r}$ is produced by a point source
2- The vector field $\frac{k}{\rho} \hat{e}_{\varphi}$ can represent the velocity field of
a vortex

3- The flux of the field from a point source over any surface is

$$
\iint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=4 \pi q
$$

4- The circulation $\int_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=2 \pi k$ if L is closed and has only one turn around the z-axis

LAPLACE AND POISSON EQUATIONS TARGET PROBLEM

A sphere has radius R and volume charge density $\rho=\rho_{c}$. Calculate:

- the electric field and
- the electrostatic potential inside and outside the sphere.
Assume: electric field and potential are continuous on the surface of the sphere

From the electromagnetic theory course:

$$
\begin{aligned}
& \nabla \cdot \bar{E}=\frac{\rho_{c}}{\varepsilon_{0}} \\
& \bar{E}=-\nabla \phi_{E}
\end{aligned}
$$

Therefore: $\quad \nabla^{2} \phi_{E}=-\frac{\rho_{c}}{\varepsilon_{0}}$
This equation is an example of:
Laplace's equation $\quad \nabla^{2} \phi=0$

Poisson's equation

$$
\nabla^{2} \phi=f(\bar{r})
$$

SYMMETRIC SOLUTIONS

of the

LAPLACE EQUATION $\nabla^{2} \phi=0$

PLANAR SYMMETRY
 $$
\phi=\phi(x)
$$
 (NO y and z dependences)

In cartesian coord.

$$
\nabla^{2} \phi=\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)
$$

$$
\frac{d^{2} \phi(x)}{d x^{2}}=0 \Rightarrow \phi(x)=a x+b
$$

CYLINDRICAL SYMMETRY $\quad \phi=\phi(\rho) \quad$ (NO φ and z dependences)
In cylindrical coord.
$\nabla^{2} \phi=\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)$

$$
\begin{aligned}
\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d \phi(\rho)}{d \rho}\right)=0 & \Rightarrow \rho \frac{d \phi(\rho)}{d \rho}=a \\
& \Rightarrow \phi(\rho)=a \ln \rho+b
\end{aligned}
$$

SPHERICAL SYMMETRY $\quad \phi=\phi(r) \quad$ (NO θ and φ dependences)
In spherical coord.

$$
\nabla^{2} \phi=\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \varphi^{2}}\right)
$$

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi(r)}{d r}\right)=0 & \Rightarrow r^{2} \frac{d \phi(r)}{d r}=a \\
& \Rightarrow \phi(r)=-\frac{a}{r}+b
\end{aligned}
$$

LAPLACE AND POISSON EQUATIONS

THEOREM 1 (17.1 in the book)
If ϕ has continuous second derivatives in the volume V and $\phi=0$ on the surface S that encloses V, then the solution to the Laplace equation $\nabla^{2} \phi=0$ is:

$$
\phi(x, y, z)=0 \quad \text { in } V
$$

PROOF
We know: $\quad \nabla \cdot(f \bar{v})=(\nabla f) \cdot \bar{v}+f \nabla \cdot \bar{v}$

$$
\begin{align*}
& \left.\begin{array}{l}
f=\phi \\
\bar{v}=\nabla \phi
\end{array}\right\} \Rightarrow \nabla \cdot(\phi \nabla \phi)=\nabla \phi \cdot \nabla \phi+\phi(\nabla \cdot \nabla \phi)=|\nabla \phi|^{2}+\phi \underbrace{\nabla^{2} \phi}_{=0} \tag{ID2}\\
& \Rightarrow \nabla \cdot(\phi \nabla \phi)-|\nabla \phi|^{2}=0 \Rightarrow \iiint_{V}\left[\nabla \cdot(\phi \nabla \phi)-|\nabla \phi|^{2}\right] d V=0
\end{align*}
$$

$$
\begin{aligned}
& \text { because } \phi=0 \text { on } S \\
& \left.\begin{array}{r}
\Rightarrow \nabla=0 \Rightarrow \phi=c \\
\text { but } \phi=0 \text { on } \mathrm{S}
\end{array}\right\} \Rightarrow c=0
\end{aligned}
$$

THE CAPACITOR EXAMPLE

Laplace equation

$$
\nabla^{2} V=0
$$

Boundary conditions:

- Left electrode

$$
V=0 \quad \text { (Dirichlet BC) }
$$

- Right electrode

$$
V=1 \quad \text { (Dirichlet } B C)
$$

- To solve the problem, COMSOL needs boundary conditions on the floor. For this example, insulating boundary condition on the floor have been applied: (Neumann)

$$
\bar{n} \cdot \nabla V=0 \quad \text { (Neumann } B C)
$$

Color plot: Potential V, Arrows: Electric field, Streamlines: Electric field, Gold: Grounded and positive electrode

DIRICHLET BOUNDARY CONDITIONS

$$
\begin{aligned}
\nabla^{2} \phi & =\rho_{0} \\
\phi & =\sigma \text { on } S
\end{aligned}
$$

Dirichlet boundary condition

UNIQUENESS THEOREM

(theorem 17.2 in the book)

What can we say about the solution?

The solution to the Poisson's equation $\nabla^{2} \phi=\rho_{0}$ in the volume V with boundary condition $\phi=\sigma$ on the surface S (S encloses V) is unique.

PROOF Let's assume that ϕ_{1} and ϕ_{2} are two solution:

$$
\begin{array}{cllll}
\nabla^{2} \phi_{1}=\rho_{0} & \text { and } & \phi_{1}=\sigma & \text { on } S \\
\nabla^{2} \phi_{2}=\rho_{0} & \text { and } & \phi_{2}=\sigma & \text { on } S
\end{array}
$$

Let's now define $\phi_{0}=\phi_{1}-\phi_{2}$

$$
\left.\begin{array}{rl}
\nabla^{2} \phi_{0} & =\nabla^{2}\left(\phi_{1}-\phi_{2}\right)=\nabla_{\nabla^{2} \phi_{1}}^{\rho_{0}}-\nabla^{\rho_{0} \phi_{2}}=0 \\
\phi_{0} & =\underbrace{\phi_{1}}_{\sigma}-\underbrace{\phi_{2}}_{\sigma}=0 \text { on } S
\end{array}\right\} \text { Due to theorem 1: } \begin{gathered}
\begin{array}{c}
\Downarrow \\
\phi_{1}=\phi_{2} \text { in } \mathrm{V}
\end{array}
\end{gathered}
$$

NEUMANN BOUNDARY CONDITIONS

$$
\begin{aligned}
& \nabla^{2} \phi=\rho \\
& \frac{\partial \phi}{\partial n}=\hat{n} \cdot \nabla \phi=\gamma \quad \text { on } S
\end{aligned}
$$

Neumann boundary condition

THEOREM 3 (17.3 in the book)

What can we say about the solution?

The solution to the Poisson's equation $\nabla^{2} \phi=\rho$ in V with boundary condition $\hat{n} \cdot \nabla \phi=\gamma \quad$ on S is not unique. If ϕ_{s} is a solution then $\phi_{\mathrm{s}}+\mathrm{c}$ is also solution where c is an arbitrary constant.

PROOF Let's assume that ϕ_{1} and ϕ_{2} are two solution:

$$
\begin{array}{rlll}
\nabla^{2} \phi_{1}=\rho & \text { and } & \hat{n} \cdot \nabla \phi_{1}=\gamma & \text { on } S \\
\nabla^{2} \phi_{2}=\rho & \text { and } & \hat{n} \cdot \nabla \phi_{2}=\gamma & \text { on } S
\end{array}
$$

Let's now define $\phi_{0}=\phi_{1}-\phi_{2}$

$$
\begin{aligned}
& \left.\begin{array}{c}
\nabla^{2} \phi_{0}=\nabla^{2}\left(\phi_{1}-\phi_{2}\right)=\overbrace{\nabla^{2} \phi_{1}}^{\rho}-\underbrace{\rho}_{\nabla^{2} \phi_{2}=0} \\
\hat{n} \cdot \nabla \phi_{0}=\hat{n} \cdot(\underbrace{\nabla \phi_{1}}_{\gamma}-\underbrace{\nabla \phi_{2}}_{\gamma})=0 \text { on } S
\end{array}\right\} \Rightarrow \hat{n} \cdot \nabla \phi_{0}=0 \Rightarrow \phi_{0} \nabla \phi_{0} \cdot \hat{n}=0 \text { on } S \Rightarrow \iint_{S} \phi_{0} \nabla \phi_{0} \cdot \hat{n} d S=0 \\
& \begin{aligned}
0=\iint_{S} \phi_{0} \nabla \phi_{0} \cdot \hat{n} d S \underset{\text { Gauss'theorem }}{=} \iint_{V} \nabla \cdot \phi_{0} \nabla \phi_{0} d V=\iiint_{V} \int_{\text {see proofof }} \underbrace{\left.\nabla \phi_{0}\right)^{2} d V}_{\geq 0} & \Rightarrow \nabla \phi_{0}=0 \Rightarrow \phi_{0}=\text { const. } \\
& \Rightarrow \phi_{1}=\phi_{2}+\text { const. }
\end{aligned}
\end{aligned}
$$

TARGET PROBLEM

A sphere has radius R and volume charge density $\rho=\rho_{c}$. Calculate:

- the electric field and
- the electrostatic potential
inside and outside the sphere.
Assume: electric field and potential are continuous on the surface of the sphere

Spherical symmetry: $\phi=\phi(r)$
Outside the sphere

$$
\begin{aligned}
& \nabla^{2} \phi_{E}=0 \Rightarrow \phi_{E}^{\text {out }}(r)=-\frac{a}{r}+b \quad \begin{array}{l}
\lim _{r \rightarrow \infty} \phi_{E}(r)=0 \Rightarrow b=0 \\
\bar{E}=-\nabla \phi_{E}=-\left(\frac{d \phi_{E}(r)}{d r}, \frac{1}{r} \frac{d \phi_{E}(r)}{d \theta}, \frac{1}{r \sin \theta} \frac{d \phi_{E}(r)}{d \varphi}\right) \Rightarrow E_{r}^{\text {out }}=-\frac{d \phi_{E}^{\text {out }}(r)}{d r}=-\frac{a}{r^{2}}
\end{array},=x
\end{aligned}
$$

Inside the sphere

$$
\nabla^{2} \phi_{E}=-\frac{\rho_{c}}{\varepsilon_{0}} \quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi_{E}(r)}{d r}\right)=-\frac{\rho_{c}}{\varepsilon_{0}}
$$

multiplying by r^{2} and integrating:

$$
\begin{gathered}
r^{2} \frac{d \phi_{E}(r)}{d r}=-\frac{\rho_{c} r^{3}}{3 \varepsilon_{0}}+c \Rightarrow \frac{d \phi_{E}(r)}{d r}=-\frac{\rho_{c} r}{3 \varepsilon_{0}}+\frac{c}{r^{2}} \Rightarrow \phi_{E}^{i n}(r)=-\frac{\rho_{c} r^{2}}{6 \varepsilon_{0}}+d \\
E_{r}^{i n}=-\frac{d \phi_{E}^{i n}(r)}{d r}=+\frac{\rho_{c} r}{3 \varepsilon_{0}}-\frac{c}{r^{2}}
\end{gathered} \begin{aligned}
& \text { Divergent at } r=0 \\
& \text { NOT physical! } \Rightarrow c=0
\end{aligned},
$$

TARGET PROBLEM

We still have to calculate a and d !
Boundary conditions:

$$
\begin{aligned}
& E_{r}^{\text {out }}(R)=E_{r}^{\text {in }}(R) \Rightarrow-\frac{a}{R^{2}}=\frac{\rho_{c} R}{3 \varepsilon_{0}} \Rightarrow a=-\frac{\rho_{c} R^{3}}{3 \varepsilon_{0}} \\
& \phi_{E}^{\text {out }}(R)=\phi_{E}^{\text {in }}(R) \Rightarrow-\frac{\rho_{c} R^{2}}{6 \varepsilon_{0}}+d=\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} R} \Rightarrow d=\frac{\rho_{c} R^{2}}{2 \varepsilon_{0}}
\end{aligned}
$$

$$
\phi_{E}^{\text {out }}(r)=\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} r}
$$

$$
\phi_{E}^{i n}(r)=\frac{\rho_{c} R^{2}}{6 \varepsilon_{0}}\left(3-\frac{r^{2}}{R^{2}}\right)
$$

$$
\bar{E}^{\text {out }}=+\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} r^{2}} \hat{e}_{r}
$$

$$
Q=\int \rho_{c} d V=\frac{4}{3} \pi R^{3} \rho_{c} \Rightarrow \bar{E}^{\text {out }}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{e}_{r}
$$

$$
\bar{E}^{i n}=+\frac{\rho_{c} r}{3 \varepsilon_{0}} \hat{e}_{r}
$$

