
NABLAOPERATOR och NABLARÄKNING,
INTEGRALSATSER,

TENSORER och INDEXRÄKNING
Kapitel  11, 12, 14
Kapitel 15

VEKTORANALYS
HT 2021

CELTE / CENMI
ED1110

version: 26-sept-2021



THIS WEEK
 Nabla

o Grad div and rot using nabla (chapter 11)
o laplacian (chapter 14)

 ”Nabla räkning” (chapter 11)
 Example of application of nabla räkning: (chapter 14)

o from Maxwell’s equations to electromagnetic waves

 ”Integralsaster” (chapter 15)

 Indexräkning: (chapter 12)
o application to vector identities
o application to nabla identities

 Tensors (not necessary to pass the course) (chapter 13)



Connections with previous and next 
topics

 Nabla and nablaräkning: connection to gradient, divergence and curl.

 It will help to simplify expressions that contain sevral div, grad and rot 
(expressions that are often present in electromagentic theory)

 Integralsatser: connection with Gauss’ and Stokes’ theorems (integralsatser 
are a generalization of them)



TARGET PROBLEM



NUCLEAR FUSION

The sun is composed mainly of hydrogen (74%) 
and helium      (25%)

The temperature is so high (6000K on the surface, 15MK in the core)

that the atoms are ionized:

• the sun is basically composed of a “ionized gas” made of electrons and protons

• this kind of “ionized gas” is the fourth state of matter (solid, liquid, gas and): plasma

What happens in the sun core?
Protons fuse together and produce helium and energy.
(the actual chain of reactions is more complicated)

On Earth, scientists are trying to use this principle 
to build a fusion reactor using the reaction:

2H+3H→4He+n+energy



2H+3H→4He+n+energy

Can we use this method to obtain energy, here on the earth?
Physicists and engineers are working (also at KTH) on it…

The JET experiment 
(located near Oxford) 

can produce plasmas for ≈20-30sec with 
max temperature 50-100 million K

https://www.euro-fusion.org/

For more info visit the Division of Fusion Plasma Physics at KTH 
or visit the website https://www.kth.se/ee/fpp

At the Division of Fusion 
Plasma Physics in KTH we 

reach 5 million K

Outer view of JET Inner view of the plasma chamber in JET
(chamber height and width: 2.1m x 1.25m)

Outer view of EXTRAP T2R at KTH
(chamber height and width: 0.2m x 0.2m)

FUSION EXPERIMENTS

https://www.euro-fusion.org/
https://www.kth.se/ee/fpp


In the plasma there are many particles (1019, 1020 per m3), 
strong magnetic and electric fields and electric currents.

How can we describe  the behaviour of the plasma?

Magnetohydrodynamics (MHD)

Simple example:        THE THETA PINCH

z

Bρ
ϕ

plasma

When the plasma is in equilibrium, the MHD equations can be simplified to:

grad p j B = ×



p is the pressure
j is the current density

⇒ ( )
0

1grad p rotB B
µ

= ×

We need to introduce:
• Operators
• Nabla

And then?
How to continue?

J

1

0rotB jµ=

TARGET PROBLEM



OPERATOR
What is a function?

A function is a law defined in a domain X that to each element x in X associates
one and only one element y in Y. 

Example: X=[0,2]
f(x)=x2

x

y

20

The slope of f(x) is its derivative:

( )( ) df xg x
dx

=

x

y

20

g(x) is still a function.

So the derivative is a rule that associates a function to another function.
The derivative is an example of operator

2



OPERATOR

DEFINITION An operator T is a law that to each function f in the 
function class Dt associates a function T(f).

DEFINITION An operator T is linear if    T(af+bg)=aT(f)+bT(g),
where f and g are functions belonging to Dt and a, b constants

EXAMPLE: ?

( )( ) ( ) ( )

dT is it linear
dx

d af bg df dgT af bg a b aT f bT g
dx dx dx

=

+
+ = = + = +

YES

SUM AND PRODUCT OF OPERATORS

( )( ) ( ) ( )
( )( ) ( ( ))
T U f T f U f
TU f T U f
+ = +

=
Sum of two operators

Product of two operators

3

where:
f,g are two functions of x
a,b are two constants 



NABLA

, ,grad
x y z
φ φ φφ

 ∂ ∂ ∂
≡  ∂ ∂ ∂ 

yx z
AA AdivA

x y z
∂∂ ∂

≡ + +
∂ ∂ ∂

ˆ ˆ ˆx y z

x y z

e e e

rot A
x y z

A A A

∂ ∂ ∂
≡
∂ ∂ ∂

Gradient, divergence and curl
have something in common:

gradφ φ= ∇

divA A= ∇⋅

rot A A= ∇×

4

is common 
to all three definitions

, ,
x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 

, ,
x y z

 ∂ ∂ ∂
∇ ≡  ∂ ∂ ∂ 

This operator is called
NABLA



THE SCALAR LAPLACIAN, THE VECTOR LAPLACIAN and more

φ∆

• The divergence of the gradient is called laplacian or Laplace operator

2 2 2
2

2 2 2, , , ,
x y z x y z x y z

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∇ = ∇⋅∇ = ⋅ = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

In a Cartesian coordinate system:

2φ φ∇ ⋅∇ = ∇ is the scalar Laplacian of the scalar field φ.  Sometimes written as:

2 2 2
2

2 2 2x y z
φ φ φφ

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

A ⋅∇

( ), , , ,x y z x y zA A A A A A A
x y z x y z

   ∂ ∂ ∂ ∂ ∂ ∂
⋅∇ = ⋅ = + +   ∂ ∂ ∂ ∂ ∂ ∂   

so: ( ) x y z
B B BA B A A A
x y z

 ∂ ∂ ∂
⋅∇ = + + ∂ ∂ ∂ 

• The nabla can be used to define new operators like:              or A×∇

Example:

5Note that: ( ) ( )A B A B⋅∇ ≠ ∇ ⋅ EXERCISE:    calculate ( )a r∇⋅

EXERCISE:    calculate
where        is constant

( )a r⋅∇
a

• In a Cartesian coordinate system, the vector laplacian is defined as



IDENTITIES

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )
( )
( ) ( ) 2

0

0

A A A

A A A

A B B A A B

A B B A B A A B A B

A B B A A B B A A B

A

A A A

φψ φ ψ φ ψ

φ φ φ

φ φ φ

φ

∇ = ∇ + ∇

∇⋅ = ∇ ⋅ + ∇ ⋅

∇× = ∇ × + ∇×

∇⋅ × = ⋅ ∇× − ⋅ ∇×

∇× × = ⋅∇ − ∇⋅ − ⋅∇ + ∇⋅

∇ ⋅ = ⋅∇ + ⋅∇ + × ∇× + × ∇×

∇× ∇ =

∇⋅ ∇× =

∇× ∇× = ∇ ∇⋅ −∇

ID1

ID2

ID3

ID4

ID5

ID6

ID7

ID8

ID9

:
:

and scalar fields
A and B vector fields
φ ψ

6



NABLARÄKNING
( ) ( ), ,A A

x z z
φ φ∂ ∂ ∂ ∇ ⋅ = ⋅ ∂ ∂ ∂ 

Let’s consider ID2:

This seems almost like a vector!
Can we simply use the vector algebra rules? NO!

The derivative must be applied to all the fields in the bracket.
How to remember that with the nabla?
By adding dots to each field and rewriting the expression as a sum:

( ) ( ) ( )A A Aφ φ φ∇ ⋅ = ∇ ⋅ +∇ ⋅
IMPORTANT: after the previous step, the nabla will be applied only to the field with the dot.

Now the expression can be rewritten using vector algebra rules (the goal is to obtain an 
expression in which only the field with the dot follows nabla): 

( ) ( ) ( )A A Aφ φ φ∇ ⋅ = ∇ ⋅ +∇ ⋅


Nabla contains derivatives and we know that: ( )d fg df dgg f
dx dx dx

= + ID1

( ) ( )
( ) ( )

n ca n ca

n a c n a c
a n c n a c a n c c n a

⋅ + ⋅ =

⋅ + ⋅ =

⋅ + ⋅ = ⋅ + ⋅

 

 

   

ID2A Aφ φ= ⋅∇ + ∇⋅

re
w

ri
tin

g 
th

e 
ex

pr
es

si
on

 
us

in
g 

ve
ct

or
 a

lg
eb

ra

EXERCISE: prove that ( ) ( )A A Aφ φ φ∇× = ∇ × + ∇× ID3 7



NABLARÄKNING

( ) ( ) ( )
( ) ( )

, , , , , , , , , , , ,

, , , , , , , ,

A B A B A B

A B A B

φ ψ φ ψ φ ψ

φ ψ φ ψ

∇⋅⋅ = ∇ ⋅⋅ +∇ ⋅⋅ +

∇ ⋅⋅ +∇ ⋅⋅ +

  


  


To correctly perform the nabla calculation, there are three steps.

We want to calculate the following expression:
Where  ∇∙∙ can be: ∇ (gradient) or ∇∙ (divergence) or ∇ × (curl)

( ), , , ,A Bφ ψ∇⋅⋅ 

STEP 1    Rewrite the expression as a sum with N terms, where N is the number of 
(scalar or vector) fields in the expression.  Every term in the sum must be identical 
to the original expression, but the i-th field in the i-th term must have a dot. 
This is to remember that nabla is applied to the field with the “dot”. 

STEP 2    Now, the nabla can be considered as a vector. Each term can be
rewritten using vector algebra rules. The aim is to reach an expression for which
in each term only the field with the “dot” appears after the nabla.

STEP 3    Finally, you can remove the “dot”.

(But remember that THE NABLA IS NOT A VECTOR)
8



( ) ( ) ( )A B B A A B∇⋅ × = ⋅ ∇× − ⋅ ∇×Prove ID4:

( ) ( ) ( )A B A B A B∇⋅ × = ∇ ⋅ × +∇ ⋅ × =
  Now nabla can be treated as vector.

( ) ( ) ( )n A B B n A A n B⋅ × = ⋅ × = − ⋅ ×Then, since:

( ) ( )B A A B B rot A A rotB= ⋅ ∇× − ⋅ ∇× = ⋅ − ⋅
 

( ) ( )φ φ∇× ∇ = ∇× ∇ =
 then, since: ( ) ( ) 0n n n nλ λ× = × =

( ) 0φ= ∇× ∇ =


since: ( ) ( ) ( )n n c n n c c n n× × = ⋅ − ⋅
( ) ( )A A∇× ∇× = ∇× ∇× =



( ) ( ) ( ) 2A A A A= ∇ ∇⋅ − ∇ ⋅∇ = ∇ ∇⋅ −∇
 

NABLARÄKNING: EXAMPLES

ID4

Prove ID7: ( ) 0φ∇× ∇ = ID7

Prove ID9: ( ) ( ) 2A A A∇× ∇× = ∇ ∇⋅ −∇ ID9

9



THE VECTOR LAPLACIAN: general definition

• The scalar Laplacian has been defined as:

• In a Cartesian coordinate system, the vector Laplacian is defined as:

• In any other coordinate system, the vector Laplacian is defined using ID9:

2 2 2
2

2 2 2x y z
φ φ φφ

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

5

( ) ( ) ( )2 2 2 2ˆ ˆ ˆ∇ = ∇ + ∇ + ∇x x y y z zA A e A e A e

( ) ( )2∇ =∇ ∇⋅ −∇× ∇×A A A

EXERCISE: calculate 2 ˆ∇ re



ELECTROMAGNETIC WAVE EQUATION IN VACUUM
We start from the Maxwell's equations in 
vacuum and in a charge-free space:

0 0

0

0

E
BE
t

B
EB
t

µ ε

∇ ⋅ =

∂
∇× = −

∂
∇ ⋅ =

∂
∇× =

∂

A magnetic field that varies in time 
produces an electric field.

An electric field that varies in time 
produces a magetic field.

10



2
2

2 2

1 uu
v t

∂
∇ =

∂

u
mechanical wave

v is the velocity of the wave

11



2
2

2 2

1 uu
v t

∂
∇ =

∂

u
mechanical wave

v is the velocity of the wave

electromagnetic wave
E

B

11



2
2

2 2

1 uu
v t

∂
∇ =

∂

u
mechanical wave

v is the velocity of the wave

electromagnetic wave
E

B

2 2
2 2

2 2 2 2

1 1E BE and B
v t v t

∂ ∂
∇ = ∇ =

∂ ∂
11



ELECTROMAGNETIC WAVE EQUATION IN VACUUM
We start from the Maxwell's equations in 
vacuum and in a charge-free space:

0 0

0

0

E
BE
t

B
EB
t

µ ε

∇ ⋅ =

∂
∇× = −

∂
∇ ⋅ =

∂
∇× =

∂

A magnetic field that varies in time 
produces an electric field.

An electric field that varies in time 
produces a magetic field.



ELECTROMAGNETIC WAVE EQUATION IN VACUUM
We start from the Maxwell's equations in 
vacuum and in a charge-free space:

0 0

0

0

E
BE
t

B
EB
t

µ ε

∇ ⋅ =

∂
∇× = −

∂
∇ ⋅ =

∂
∇× =

∂

A magnetic field that varies in time 
produces an electric field.

An electric field that varies in time 
produces a magetic field.

in a similar way, we can obtain:
2

2
0 0 2

BB
t

µ ε ∂
∇ =

∂

The wave propagates with velocity :

0 0

1v
µ ε

=

(which is the velocity of the light in vacuum)

12
0 8

7 2
0

8.85 10 /  (vacuum permittivity)
2.99 10 /

4 10 /  (vacuum permeability)
F m

v m s
N A

ε

µ π

−

−

= ⋅ ⇒ = ⋅
= ⋅ 

( ) ( )

( ) ( )

2 2
2

22
0 0 2

0 0 0 0 2

E E E E
EEB E E tE B

t t t t t

µ ε
µ ε µ ε

∇× ∇× = ∇ ∇⋅ −∇ = −∇
 ∂
⇒∇ =   ∂ ∂ ∂ ∂ ∂ ∂∇× ∇× = ∇× − = − ∇× = − = −    ∂ ∂ ∂ ∂ ∂    



TARGET PROBLEM

z

Bρ
ϕ

J

plasma

( )
0

1grad p rotB B
µ

= ×

( )
0

1p B B
µ

∇ = ∇× ×

plasma pressure magnetic pressure Forces due to bending
and parallel compression

of the field
In our case field lines are straight and parallel 

r
12

Bp

( )
2

0 0

1
2
Bp B B
µ µ

 
∇ + = ⋅∇ 
 

2

0

0
2
Bp
µ

 
∇ + = 
 

2

02
Bp constant
µ

+ =⇒

( ) ( ) ( )

( )2

( )

1
2

B B B B B B B B

B B B

∇× × = − × ∇× = −∇ ⋅ + ⋅∇ =

= − ∇ + ⋅∇

   

To go further, we know that:
So, we can express                as :

( ) ( ) ( )2 2 ( )B B B B B B B B B∇ =∇ ⋅ = ∇ ⋅ +∇ ⋅ = ∇ ⋅
  

( ) ( ) ( )a n b n a b b a n× × = ⋅ − ⋅
( )B B∇× ×



A BIT OF HISTORY…

Why the word “nabla”?

The theory of nabla operator was developed by Tait (a co-worker of Maxwell ). 
It was one of his most important achievements.
Tait was also a good musician in playing an old assyrian instrument similar to an harp.
The name of this instrument in greek is nabla.

The name “nabla operator” was suggested 
by James Clerk Maxwell to make a joke on Tait’s hobby

13



WHICH STATEMENT IS WRONG?

14

1- grad, div and rot can be expressed using nabla

( ) ( ) ( )2 2 2 2
1 1 2 2 3 3ˆ ˆ ˆA A e A e A e∇ = ∇ + ∇ + ∇

( ) 0φ∇× ∇ =3-

4- ( ) 0A∇⋅ ∇× =



INTEGRALSATSER

15



TARGET PROBLEM

• A body is floating in the water

• What is the force that makes it floating?

• We can use the 
Arkimedes principle.

• But how does the 
Arkimedes principle 
work?

16



z

ˆdF pndS= −

where p [N/m2] is the pressure

TARGET PROBLEM

ˆ( )
S S

F dF pndS pdS= = − = −∫ ∫∫ ∫∫

How to continue?

Apply Gauss’s theorem?

But A is vector, 
while p is a scalar!

S V

A dS divAdV⋅ =∫∫ ∫∫∫

17

We need to generalize the Gauss’s theorem.

dF

n̂

S

V



In previous lessons we saw that:

( ) ( )
Q

P

S L

V S

dr Q P

A dS A dr

AdV A dS

φ φ φ∇ ⋅ = −

∇× ⋅ = ⋅

∇ ⋅ = ⋅

∫
∫∫ ∫

∫∫∫ ∫∫

(Stokes)

(Gauss)

What do they have in common?
They all express the integral of a derivative of a function in terms of the values
of the function at the integration domain boundaries.

(1)

(2)

(3)

Generalized Gauss’s theorem

We can further generalize the Gauss’s theorem :

( ) ( )
S V

dS dV= ∇∫∫ ∫∫∫ 

where (…) can be substituted with 
everything that gives a well defined 
meaning to both sides of the expression.

( ) ( )
b

a

df dx f b f a
dx

= −∫

In this sense, theorems (1), (2) and (3) are a generalization of:

18
EXERCISE:  give three examples for the term (…) 



Multiply by      , use the Gauss’s theorem and then ID4 

( ) ( )
S V

dS dV= ∇∫∫ ∫∫∫ 

(A) If                       , we obtain the Gauss’s theorem( ) A= ⋅

(B) If                       , we obtain:( ) φ=

S V

dS dVφ φ= ∇∫∫ ∫∫∫

(already proved)

PROOF

( )( )

ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ

x x x
S S V

x x x x
V V V

e dS e dS e dV

e e dV e dV e dV

φ φ φ

φ φ φ φ

⋅ = ⋅ = ∇ =

= ∇ ⋅ + ∇ ⋅ = ∇ ⋅ = ⋅ ∇

∫∫ ∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫

(Gauss) ID2

(C) If                       , we obtain:( ) A= × ( )
S V

dS A A dV× = ∇×∫∫ ∫∫∫
PROOF

îe

19



We can further generalize also the Stokes’ theorem :

( ) ( )( )
L S

dr dS= ×∇∫ ∫∫  Generalized Stokes’s theorem
where (…) can be substituted with everything that gives
a well defined meaning to both sides of the expression.

(A) If    , we obtain the Stokes’s theorem( ) A= ⋅

(B) If    , we obtain:( ) φ=

(already proved)

PROOF

îe

(C) If    , we obtain:( ) A= ×

PROOF

L S

dr dS gradφ φ= ×∫ ∫∫

Multiply by      , use the Stokes’s theorem and then ID3 

( )
L S

dr A dS A× = ×∇ ×∫ ∫∫

Multiply by      and use the Stokes’s theorem.îe

20



( )
0

0,0,

S V

F pdS p dV

p p gz
p g

ρ
ρ

= − = − ∇

= −

∇ = −

∫∫ ∫∫∫

z

S

V

dF

n̂

ˆdF pndS= −

where p [N/m2] is the pressure

TARGET PROBLEM

ˆ( )
S S

F dF pndS pdS= = − = −∫ ∫∫ ∫∫

How to continue?
Apply Gauss’s theorem? S V

A dS divAdV⋅ =∫∫ ∫∫∫
But A is vector, 

while p is a scalar!

S V

dS dVφ φ= ∇∫∫ ∫∫∫We apply the generalized 
Gauss’s theorem, with (…)=φ.

ˆ ˆz z
V

F ge dV gVeρ ρ= =∫∫∫
Arkimedes principle

where ρ is the water density
and g the gravitational acceleration

21



WHICH STATEMENT IS WRONG?

1- Gauss and Stokes theorems show that the integral of 
the derivative of a function is related to the value 
of the function at the boundary of the integration domain. 

2- is a vector

3- is a vector

4- is a scalar

L

drφ∫

S

dSφ∫∫

S

dS A×∫∫

22



INDEXRÄKNING
(suffix notation)

AND

(some very basic information on)

CARTESIAN TENSORS

23



( )A B∇⋅ ×

INDEXRÄKNING
To simplify this expression

we used the “nablaräkning” ( ) ( )A B A B B rot A A rotB= ∇⋅ × +∇ ⋅ × = ⋅ − ⋅
 

Can we use smarter methods?

YES!YES (sometimes) !

These are called “suffix notation methods”  (“indexräkning”) 
and come from the study of tensors.

To understand this method, we start with a (brief) look at Cartesian tensors

24



j

y

x

z

E

j

PHYSICAL EXAMPLE
ELECTRICAL CONDUCTIVITY

Current 
density

Electric 
field

Electrical 
conductivity

ˆ

ˆ
y y

y y

If E E e

then j E eσ

=

=

But for many materials this is not true!!

( , , )x y zj j j j=

Ohm’s law:

Is the Ohm’s law wrong? NO!
σ is not a scalar
σ is a cartesian tensor of rank 2

x xxx xy xz

y yx yy yz y

zx zy zzz z

j E
j E j E

j E

σ σ σ
σ σ σ σ

σ σ σ

    
    

= ⇒ =    
        

(0, ,0)

( , , )
y

xy y yy y zy y

If E E

then j E E Eσ σ σ

=

=
25

j Eσ=



j Eσ=The Ohm’s law is:

But σ is not a scalar :

In suffix notation this can be written very concisely: i ik kj Eσ=

TENSORS

x xxx xy xz

y yx yy yz y

zx zy zzz z

j E
j E
j E

σ σ σ
σ σ σ
σ σ σ

    
    

=    
        

σ is a cartesian tensor of rank 2 
in the R3 space.
And it has 32 elements

the rank is the number of suffixes

A tensor of rank M 
in the Rn space has nM elements

tij is a tensor of rank 2 and can be regarded as a matrix
if it is defined in R2, then i,j={1,2}         and it has 22 elements

in R3, then i,j={1,2,3}       and it has 32 elements
in R4, then i,j={1,2,3,4}    and it has 42 elements
…

tm is a tensor of rank 1  and can be regarded as a vector

A tensor is “Cartesian” if the coordinate system is Cartesian
26



1- Indices x, y, z can be substituted with 1, 2, 3
2- Coordinates x, y, z with x1, x2, x3.

Examples:

INDEX NOTATION

x

y

z

yA
xA

zA

x1

x2

x3

2A
1A

3A

i i ic a b c a b= + ⇒ = +

in suffix notation this corresponds to 
the 3 equations obtained using i=1,2,3

The suffix i is called “free suffix”
The choice of the free suffix is arbitrary: j j j

m m m

c a b
c a b
= +

= +
represent the same equation!

But the same free suffix must be used for each term of the equation 27

( ) ( )
1

1 2 3

1

2

3

2 ,2 1,2

, , , ,

ˆ ˆ
ˆ ˆ
ˆ ˆ

x

x y z

x

y

z

x

A A

A A A A A A

e e
e e
e e

A A
y y
φ φ φ

=

=

=
=

=
∂∂

= ∂ = =
∂ ∂

A



3- Summation convention: 

whenever a suffix is repeated in a single term in 
an equation, summation from 1 to 3 is implied. The repeated suffix is
called dummy suffix.

1 1 2 2 3 3
1,3

i i
i

a b a b a b a b a b
=

⋅ = + + = ∑

The choice of the dummy suffix is arbitrary:     we can write also k ka b a b⋅ =
No suffix appears more than twice in any term of the expression:

( )( ) i i j ja b c d a b c d⋅ ⋅ =

we cannot use “i” also here!

But the ordering of terms is arbitrary: ( )( )i i j j j i j i k m k ma b c d c a d b c a d b a b c d= = = ⋅ ⋅

dummy suffix

free suffix

Example: k h ka b c

INDEX NOTATION

i ia b a b⇒ ⋅ =

( )k k h k k h h
k

a c b a c b a c b   = = = ⋅    
∑

( )( )2

k
a b c a= ⋅

dummy suffixes

free suffix

EXERCISE. Write this expression using vectors: i k n k ia b a c a
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The Kronecker delta
The Kronecker delta is a tensor of rank 2 defined as:

1
0ij

i j
otherwise

δ
=

= 


1 0
0 1
 
 
 

Some properties of the Kronecker delta:

km jm jkl lδ = 1 1 2 2
1

N

jm km jm km j k j k jm km jk
m

l l l l l lδ δ δ δ δ
=

= = + + + + =∑  

summation convention all zeros, unless k=m

It can be visualized 
as a nxn identity matrix

(where n is the dimension
of the space)

3iiδ =
3

11 22 33
1

3ii ii
i

δ δ δ δ δ
=

= = + + =∑
summation convention

km m ka aδ = 1 1 2 2
1

... ...
N

km m km m k k m km k
m

a a a a a aδ δ δ δ δ
=

= = + + + + =∑

29
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(in space with N dim.)



The alternating tensor
(Levi-Civita tensor or permutationssymbolen)

The alternating tensor εijk  (a tensor of rank 3) is defined as:

( ) ( 1, 2, 3)

( 1, 2, 3)

0 , ,
ˆ ˆ ˆ 1 ( , , ) (1, 2,3) (2,3,1) (3,1, 2)

1 ( , , ) (1,3, 2) (2,1,3) (3, 2,1)
ijk i j k even permutation of

odd permutation of

if any of i j k are equal
e e e if i j k or or

if i j k or or
ε


= ⋅ × = + =
− =

The alternating tensor can be used to express the cross product: ( ) ijk j ki
a b a bε× =

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆi i j j k k i j k j k ijk j ki
a b e a b e a e b e e e e a b a bε × = ⋅ × = ⋅ × = ⋅ × = 

PROOF:

EXAMPLE FOR THE x COMPONENT (i=1):

( ) 2 3 3 21
3 3

1 1 123 2 3 132 3 2 2 3 3 2
1 1

jk j k jk j k
j k

a b a b a b

a b a b a b a b a b a bε ε ε ε
= =

× = −

= = + = −∑∑

Some properties: ijk jki kij

ijk jik

ijk klm il jm im jl

ε ε ε

ε ε

ε ε δ δ δ δ

= =

= −

= − Very useful to simplify expressions
involving two cross products

(any even permutation of i,j,k do NOT change the sign)

(any odd permutation of i,j,k changes the sign)
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GRADIENT, DIVERGENCE AND CURL IN INDEX NOTATION

( ),1 ,2 ,3
1 2 3

, , , , , ,
x y z x x x
φ φ φ φ φ φφ φ φ φ

  ∂ ∂ ∂ ∂ ∂ ∂
∇ = = =  ∂ ∂ ∂ ∂ ∂ ∂   

GRADIENT

So, the component i of the gradient is: ( ) ,ii
φ φ∇ =

31 2
, ,

1 2 3

yx z
i i i i

i

AA AA A AA A A
x y z x x x

∂∂ ∂∂ ∂ ∂
∇ ⋅ = + + = + + = =

∂ ∂ ∂ ∂ ∂ ∂ ∑DIVERGENCE

So, the divergence is:
,i iA A∇⋅ =

CURL

( ) ,ijk k ji
A Aε∇× =

( ) 3 2

2 3

3,2 2,3 123 3,2 132 2,3 1 ,

yz

x

jk k j

A AA AA
y z x x

A A A A Aε ε ε

∂ ∂∂ ∂
∇× = − = − =

∂ ∂ ∂ ∂
− = + =

So, the component i of the curl is:
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“Nablaräkning” and “Indexräkning”
use of tensors in the calculation of nabla expressions

Calculate: ( )a r∇⋅ ×

( ) ( ) ( ) ( ) ( )0 0a r a r a r a r a r∇⋅ × = ∇ ⋅ × +∇ ⋅ × = + ⋅ ×∇ = − ⋅ ∇× =
 

where ( ), ,r x y z=

is a constanta

( ) ( )n a b a b n⋅ × = ⋅ ×

=0

( ) ( ) ( ), , ,,
0ikl k l ikl k i l k l i ikl k l ii

a r a r a r a r a rε ε ε∇ ⋅ × = = + = =

, 0
0

l i

ijk

r only if l i
If l i then ε

≠ =

= =

1- Nablaräkning

2- Indexräkning

and      is constanta
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( )
( )


( )
( ) ( ) ( )

( )


,

, ,i ,,,
φ

φ φ φ

φ

φ φ φ φ φ φ φ

φ φ ∇

∇ ⋅ = ∇ ⋅ + ∇ ⋅

∇ ⋅

∇ ⋅ = ⇒∇⋅ = = = + = ∇ ⋅ + ∇ ⋅
= = 


i

v

i i i i i iii i

i ii

A A A

A

v v A A A A A A A

v A A

( ) ( )
( )


( )
( )

( )( ) ( )
( )


( ) ( ), j , j , j, j , ,

j

v

ijk k ijk k ijk k ijk ki i ii

k kk

A A A

A

v v A A A A A A

v A A φ

φ φ φ

φ

ε φ ε φ ε φ ε φ φ φ

φ φ ∇

∇× = ∇ × + ∇×

∇×

∇× = ⇒ ∇× = = + = ∇ × + ∇×
= = 


INDEXRÄKNING

Prove that:

Prove that:

34

Prove that:

( ) ( )
( ) ( ) ( ) ( )i i ijk j k j ijk i k j jik i k j ji

a b c b a c

a b c a b c a b c b a c b a c b a c b a cε ε ε

⋅ × = − ⋅ ×

⋅ × = × = = = − = − × = − ⋅ ×
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