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This week

Gauss’ theorem:
= Divergence
o definition
o physical meaning
= The Gauss’ theorem

Stokes’ theorem:
= Curl
o definition
o physical meaning
= Stokes’ theorem
= The Green’s formula in the plane
= Culf-free fields and scalar potentials
= Solenoidal fields and vector potentials



Connections with previous and next

topics

Gauss’ theorem:

vector fields
It can be used to calculate the flux (in some specific cases)

= Applications: in "Electromagnetic Theory” to calculate the flux of electric

field (i.e. with the Gauss’ law).

Stokes’ theorem:

Vector fields
It can be used to calculate line integrals (in some specific cases).
Important implication for the conservative fields and the potential

Applications in "Electromagnetic Theory” to calculate the magnetic field
(Ampere’s law).



TARGET PROBLEM : the 15t and 2" equations of Maxwell

ELECTRIC FIELD £ MAGNETICFIELD B

a
-

S|

A

,\

(x|

0y

Magnetic monopoles
do not exist in nature.

= How can we express this
information for £ and B
using the mathematical formalism?
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TARGET PROBLEM: the 15t equation of Maxwell

Let’'s consider some ELECTRIC CHARGES and two closed surfaces, S;and S,

S, does not contain any charge.
It has no sources and no sinks:
no field lines destroyed and
no field lines created inside S1

S, contains a negative charge (a sink).
The field lines are destroyed inside S2

course for details or

J.E . dS = 2 Gauss’ law |(see the 6" week of this
S 80 “Teoretisk elektroteknik”)

We want to find: (1) the differential form of the Gauss’ law.

(i.e. to express the Guass’s law without using integrals)

(2) the corresponding expressions for the magnetic field
 the divergence of a vector field 4, divA

« the Gauss’s theorem ”Z.dE - IﬁdindV
S |14



THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system , the divergence of a vector field A is:

DEFINITION divA = 04, + o4, + 04, (1)
ox 0oy Oz

It is a measure of how much the field diverges (or converges) from (to) a point

EXAMPLE:

= Assumethat 4 is the velocity field of a gas.
* |f heated, the gas expands creating
a velocity field that diverges from the heating position.

Then, the divergence of 4 atthe heating point is positive \

/
/\\



THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system , the divergence of a vector field A is:

DEFINITION divA = 04, + o4, + 04, (1)
ox 0oy Oz

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

Assume that 4 is the velocity field of a gas.

If heated, the gas expands creating
a velocity field that diverges from the heating position.

Then, the divergence of 4 atthe heating point is positive

If cooled, the gas contracts creating
a velocity field that converges to the cooling position.
The divergence of the field is negative

At the heating position we have a source of the velocity field
At the cooling position we have a sink of the velocity field

The divergence is a measure of the strength of sources and sinks.
(This is only “intuitive”. From a formal point of view, this statement will be clear using the Gauss’ theorem)



THE GAUSS’ THEOREM

[[4-dS = ||| divday

S |4

(2)

where S is a closed surface that forms the boundary of the volume V
and 4 is a continuously differentiable vector field defined on V.

z 1 S

z=fH(xy)

~fi(xy)
y

dxdy =dS,h,-é.= dS,-é.

dxdy =—-dSn,-e. =—dS, -e.



THE GAUSS’ THEOREM

PROOF

[[[diviay - m[% L jdxdydz-
14

4 Z

I J J - dxdydz +m % vzt 1] %i dxdydz

Vv

Let’s calculate the last term:

Iﬂ—dxdydz ﬂ iy | —dz H (A5, £ (50 = AL (2,7, £ 5, )] ey =

fi(x y)

dxdy is the projection on S, of the small element surfaces on dS, and ds,.

Therefore: dxdy =—eé_-ndS, =é_-n,ds,

z

”A (x,y, f,(x,y))e. -n,dS, +”A (x, v, f,(x,y)e. -ndS, = HAe -ndS

Which means: J:” =dV = j_[ A €, -ndS (3)



THE GAUSS’ THEOREM

PROOF
In the same way we get:
cor OA o
oA, dV = || 4.e, -ndS
.;/. ax .5
v 04 o
—=dV = || 4,¢,-ndS
.;/. ay .5

(4)

()

Adding together equations (3), (4) and (5) we finally obtain:

. o4, o 04
| l [aivaar ={[| —-ddydz + ([ a—yydxdydﬁj i |

4

V

[[4.8,-ads+]||

S S

[4,6,-AdS+ ||

S

o4, dxdydz =
0z

A8, -7dS = [ 4-dS
S
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Rearrange in logic order the steps to prove the Gauss’ theorem

- Add all the three terms together in order to obtain the flux of A.

- Write down the volume integral of divA

- Consider the projection of the surface element on the xy plane, it will be dxdy. The
projection will identify a infinitesimal surface element (dS,) on the lower surface.

- Consider a closed surface.
- Split the volume integral into three terms. Then:

(a) consider only the term which depends on the z-derivative of 4,

(b) remove the z-derivative by solving the integral in dz,
(what will remain is just the integral in dxdy)

(c) express dxdy in order to obtain dS, and dS,,

(d) re-arrange the integralsin dS, and dS, in order to have obtain
a flux integral of (0,0,4)).

- Repeat the same for the terms which depend on the x-derivative of A, and on the y-
derivative of A,.

- Divide the surface in two parts, an upper surface and a lower surface and consider an
infinitesimal surface element dS, on the upper surface.

- Write the expression that relates dxdy to dS;and d§,.

11



Rearrange in logic order the steps to prove the Gauss’ theorem

8 - Add all the three terms together in order to obtain the flux of A.

5 - Write down the volume integral of divA
3 - Consider the projection of the surface element on the xy plane, it will be dxdy. The
projection will identify a infinitesimal surface element (dS,) on the lower surface.

1 - Consider a closed surface.
6 - Split the volume integral into three terms. Then:

6(a) consideronly the term which depends on the z-derivativeof 4,

6(b) remove the z-derivative by solving the integral in dz,
(what will remain is just the integral in dxdy)

6(c) express dxdy inorder toobtaindS, and dS,,

6(d) re-arrangetheintegralsin dS, and dS, in order to have obtain
a flux integral of (0,0,4)).

7 - Repeat the same for the terms which depend on the x-derivative of A, and on the y-
derivative of A,.

2 - Divide the surface in two parts, an upper surface and a lower surface and consider an
infinitesimal surface element dS, on the upper surface.

4 - Write the expression that relates dxdy to dS,and dS,.
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THE GAUSS’ THEOREM

PROOF
What if we consider a more complicated volume?

\ We divide the volume V
in smaller and “simpler” volumes

V=V+V,+..=)V,

[[[ divady = Zj [divady =
> [[4-ds=[[4-ds

iSi

v

13



PHYSICAL MEANING

Suppose that v(7) is the velocity field of a gas

Let’s apply the Gauss’ theorem to a volume V of the gas

‘ j j j div(¥)dV
}

This term is the gas volume per second [m?/s]
that flows outwards (or inwards) through a closed surface S

If there are no sinks and no sources:
the amount of gas that flows inwards through
a closed surface S is equal to the amount of gas
that flows outwards.
This implies that the flow ”\7 .dS is zero.
Therefore, div(v) =0 s

14



TARGET PROBLEM

Magnetic monopoles do not exist in nature.
How can this statement be mathematically expressed?

Magnetic monopoles do not exists = the flux of B is zero

Let's apply the Gauss’ theorem to the magnetic field:

Exercise: apply the Gauss’ theorem

_ _ 0 One of the four
to the Gauss’ law: ”S E-dS == Maxwell s
equations

where S is a closed surface and Q the total charge inside S.
Tip: Q is related to the charge density p, via Q= J.V p.adv

______________________________________________________________________

&, 0 i

15



WHICH STATEMENT IS WRONG?

1- The divergence of a vector field is a scalar

2- The divergence is related to the flux
3- The Gauss’ theorem translates a surface integral

into a volume integral

4- The Gauss’ theorem can be applied also to an open
surface

16



VEKTORANALYS

CURL (ROTATIONEN)

and

STOKES’ THEOREM



THE CURRENT DENSITY

One of the main properties of electromagnetism is that a current density J
produces a magnetic field B . The current density and the magnetic field are
related via the 4t Maxwell’'s equation:

’,40 tB —_ ; (in stationary condition)
- ,Llo ] See the “Teoretisk elektroteknik” course.

18



THE CURRENT DENSITY

One of the main properties of electromagnetism is that a current density J
produces a magnetic field B . The current density and the magnetic field are
related via the 4t Maxwell’'s equation:

’,40 tB —_ ; (in stationary condition)
- ,Llo ] See the “Teoretisk elektroteknik” course.

Consider a conductor with an electric

current I.
Assume that the section of the
conductor perpendicular to I has area S.
= |[f the electric current is uniform, then
the current density j is: 71— I
S

19



TARGET PROBLEM

r —_— J—
l"OtB — ,u()] (4th Maxwell’s equation in stationary conditions)

1=[[7-ds
L S

I\

= Calculate the magnetic field generated by the current I

= (Calculate the magnetic field inside a solenoid

We need:

(1) the definition of “curl” (or rotor) of a vector field: rotz

(2) the Stokes’ theorem EfZ-d? = ” rotd -dS
L S

20



THE CURL (ROTATIONEN) rot A

DEFINITION (in a Cartesian coordinate system)

e, e, e

o LI :[aAz_ﬁAy, o4, o4, 6Ay_anj
ox 0Oy Oz oy 0Oz Oz Ox ox Oy
4, A, A,

rot stands for “rotation”

In fact, the curl is a measure of how much the direction of a vector field
changes in space, i.e. how much the field “rotates”.

In every point of the space, rofA is a vector whose length and direction
describe the rotation of the field A4 . B

The direction is the axis of rotation of A B

The magnitude is the magnitude of rotation of 4

21



THE CURL rotA .

PHYSICAL MEANING

Consider the rotation of a rigid body
around the z-axis.

The position vector of a point P on
located at the distance p from the
origin is:

r =(x,y,0) with {

X = pCcosQ
y=psing
If P rotates with constant angular
velocity o, the angle ¢is : ¢(t)=ar.
x(t) = pcos(wt)
y(t) = psin(ar)
The velocity of the point P is:

Vx(t) :M = —p(()Sina)t = _a)y(t)
dt V=
» =V =(—wy,ox,0)
v (t)=M= @wcoswt = wx(t)
y a7 J =8,

22



THE CURL rotA

4y
/’/‘ D o S e e "'lr“'h\\'\\\
EXAMPLE e SN
f,e f/ / & A A e A w e T W .\' »;\ ‘\
. B % »
— (— RN e R
v(x,y,2)=(—wy,wnx,0) 3 N I R R
"B A A SR NV
i "i y v ¢ A
Exercse: caleulate the curl of v | r——— et —
IR IR TR SR
‘I\" \ ‘-“ \‘ Y Y . L i - Fd ,)# _,.:‘ 4 ‘
.\_‘ '~,\“ .\‘ ‘-‘ .,‘.‘ iy = £ 5 - E .»f / -14 .;f.‘ .;_4
\‘:‘ ~\‘ \ \\* T e S . l/;f / /{ /4
\\\\\* \“A‘m"'h'-h—h.--l—' = . 4 Sl" ,/i/ /*{
\\\*‘\,\k ~.-‘_“--.___k-__ . . — - r’___.f -"';',»/f, /{/
Direction:

the direction is the axis of rotation, i.e. perpendicular to
the plane of the figure

The sign (negative, in this case) is determined by the right-hand rule
Magnitude: the amount of rotation

In this example, it is constant and independent of the position, i.e.
the amount of rotation is the same at any point.

23



THE CURL rotA

PHYSICAL MEANING

Consider the rotation of a rigid body
around the z-axis.

The position vector of a point P on
located at the distance p from the
origin is:

X = pCcosQ

r =(x,y,0) with { .
y=psme

If P rotates with constant angular
velocity o, the angle ¢is : ¢(t)=ar.
x(t) = pcos(wt)
y(t) = psin(ar)
The velocity of the point P is:

vx(t):M:—pwsina)t=—wy(f)
dt v=_(- 0
A » =V =(—wy,ox,0)
vy(t) :J:l_t = pmCcos ot = wx(t) ® = we
_ 1 _
Therefore 70tV =(0,0,20) = a)zzmtv

A

24



THE STOKES’ THEOREM

§Z-d7=”r0tz-d§
L S

where A is a vector field, L is a closed curve and
S is a surface whose boundary is defined by L.

L must be positively oriented relatively to S. Both L and S must be “stykvis glatta”.
A must be continuously differentiable on S.

o 4

25



THE STOKES’ THEOREM

PROOF 4
Five steps:
y

1. We divide S in “many” “smaller”

(infinitesimal) surfaces: '

S=> 5

2. We project S on:

the xy-plane S ’

the yz-plane ',

the xz-plane ',
3. We prove the Stokes' theorem on §'.. S

(the only difficult part)

4. We add the results for the projections together
and we obtain the Stokes' theorem on §'

5. We add the results for S together
and we obtain the Stokes' theorem on §

26



THE STOKES’ THEOREM z

Y e
PROOF z
Let’s consider the plane surface S'.
located in the xy-plane (i.e. z=constant=z) .
LlZ

with boundary defined by the curve Li,

»

X

Let’s calculate f A-dr

Ll

f A-dr={ 4.(x.p.z)dv+A,(xy.2)dy+A.(x.p.2,)dz

z

- NG L /
Y Y hd

Term 1 Term 2 Term 3

Term 3 =0 (z=constant! = dz=0)

Term 1 y

§Liz Ax (.X, Ve Zo)dx — ﬁ Ax (X,y, Zo)dx =

+L,

Lq A (x,y,z,)dx + LZ A (x,y,z,)dx =

[ A, f @) zg)de+ [ 4, (x, g (x). 2 el =




THE STOKES’ THEOREM
PROOF

= [" 4, @)z )= [ A, (x, g (), 2 )dx = [ [4,(x, £(0),2,) ~ 4, (x. g (x), 2,)] e =

J‘ L(:)@A (X, o)dxdy__J' J‘g((x))%dxd _J‘J‘ xdxdy

Therefore we get:

Term 1 f A, (x,y,2,)dx = _” - dxdy

In a similar way:

Term 2 §; A,(x,y,2,)dx = ”—ydxdy -
It is the z-component of rot4 !

Adding Term 1, Term 2 and Term 3

j dar- H[ jdxdy

28



THE STOKES’ THEOREM

So can rewrite it as:

ij A-dr = ” (rotA)_dxdy = H (rotd)_é.-dS
) s, X

|

A

dxdy=é,-hdS=¢.-dS

In a similar way we have:

§, 4-dr = [ (rotd) ¢, -dS
&

Yy
§, 4-dr = [ (rotd).e,-dS
X Si
Now let’'s add everything together:

{ A-dr+{ A-dar+{ A-dr={ 4-dr

Li

Si

29



THE STOKES’ THEOREM

So can rewrite it as:

ffﬂ, A-dr = ” (rotA)_dxdy = H (rotd)_é.-dS

s

A

dxdy=é,-hdS=¢.-dS

In a similar way we have:

Efy-y A-dr = || (rotd) é, -dS

S
§, 4-dr = [ (rotd).e,-dS
X Si
Now let's add everything together:

§Ad—+§Ad—+§Ad— §Ad—

________________________
~

-
-
-~
-
-
-
-
-
~>

H(rotA) é -dS +H(r0tA) e, .dS +H(r0tA) é.-dS = ”rotA .dS

30



THE STOKES’ THEOREM
PROOF
§L[Z-dl7:ﬁ‘r0tz-d§
g
But we are interested in the whole S.

So we add these small contributions
altogether:

ijmm?.dE:jjer.dE
\i s’ g P

fg-dfzﬂ‘rotz-dg
L S

31



Rearrange in logic order the steps to prove the Stokes’ theorem

- Prove the Stokes’ theorem on S'.:
(a) - Write the line integral of the vector field along the boundary of S?, and split the

integral into three terms.
0A_

(b) - Consider only the integral in dx and prove thatf A, (x,y,z,)dx = —H dxdy
(c) -Repeatthe same for the integral in dy and dz
(d) -Add the three integralsin dx, dy and dz to obtain j A-dr = H(rotA) dxdy

(e) -Rewrite dxdy to obtain j A-dr = ”(rotA)e -dS 5

- Prove the Stokes’ theorem on S: add together all the expressions obtained for S¢

- Consider a closed path and a surface whose boundary is defined by the closed path.

- Prove the Stokes’ theorem on S*:
(a) -Repeat the same procedure for §*, and §%,,

(b) - add together the expressions for the integrals
in St to S, and S¢, obtaining: J.L,Z’df = Hrotz-dg

- Divide the surface in small areas S and consider the projection of S on the
Xy, Vz, xz planes

32



Rearrange in logic order the steps to prove the Stokes’ theorem

3 - Prove the Stokes’ theoremon S'.:
3.(a) - Write the line integral of the vector field along the boundary of S, and split the
integral into three terms.
3.(b) - Consider only the integralin dx and prove thatf A (x,y,2,)dx = —H
3.(c) -Repeatthe same for the integralin dy and dz
3.(d) -Addthe three integralsin dx, dy and dz to obtain j A-dr = H(rotA) dxdy
3.(e) -Rewrite dxdy to obtain j A-dr = ” (rotd).é_-dS 5

04,

dxdy

5 - Prove the Stokes’ theorem on S: add together all the expressions obtained for S!
1 - Consider a closed path and a surface whose boundary is defined by the closed path.

4 - Prove the Stokes’ theorem on St
4.(a) -Repeatthe same procedure for §’, and ',
4.(b) - add together the expressions for the integrals

in St to S, and S¢, obtaining: J.LIZ-dF:HrotZ-dL?

2 - Divide the surface in small areas S* and consider the projection of S on the
Xy, Vz, xz planes

33



TARGET PROBLEM

r —_— J—
rol‘B = luoj (4th Maxwell’s equation in stationary conditions)

1=Lj7-d§

N

\

Using the Stokes’ theorem we can find an expression that relates directly B with I:

§B-dr =[[rotB-dS = [ u,j-dS =p,|[7-dS=uI = |{B-dF=u,l
L S S S L

T

Stokes’ theorem
e S |

4t Maxwell’s equation

(in stationary condition) Ampere’s law

I Using the Ampere’s law:

£ e s G 25 5 3 8 8 5§ & ) P
AR s g
' | B-ar =[B|i, + 01, +01, + 01, =|B]I, ly
; 7 L J

0

34



THE GREEN FORMULA IN THE PLANE

] (a—Q—a—PJ dxdy = f(de+Qdy)

THEOREM .2 she textboot ox ay

PROOF
We can start from Stokes’ theorem ide? = ” rotA-dS
s S

§A-dr ={(Adx+Ady+Adz)=§(A4,dx+ Aydy)\
: T
e senseme, [ ST a (e )
J:[ I"Otz . d§ = jj ( aAy — 6Ax jéz . ézdxdy which is the Green formula
S l S Ox 8y %:1—/ / for P=4, and 0=4,

' QJ|Q) Q
%k ,\%)|Q)\<®)
SEISASIN

35



CURL FREE FIELD AND SCALAR POTENTIAL
(virvelfria féalt och skalar potential)

Sometimes called “irrotational”

DEFINITION: A vector field 4 is “curl free” if rot A=0

If Ais continuously derivable and defined in a simply connected domain, then:

rot A=0 < A has a scalar potential ¢, 4 = grad¢

T H EO RE M (9.3 in the textbook)

PROOF
(1) rot A=0
§Z-d7=ﬂmz2-d§:o
L S

So, if the curl is zero, also the circulation is zero = then the field is conservative
and has a scalar potential. See theorems 6.3 and 6.4 in the textbook or the slides of week 2.

(2) A=gradé

roterotgmcM:rot 8¢,8¢,8¢ Rl 00¢ 0 a¢,...,... =(0,0,0)
ox Oy Oz Oy 0z 0z Oy

36



SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION: A vector field B is called solenoidal if divB =0

DEFINITION: 4 is a vector potential of the vector field B if B =rotd

THEOREM e.uuei00 | B has a vector potential A4 if and only if B has divergence zero:
B=rotd < divB=0

PROOF
(1)B has a vector potential = B=rotd = divB= div(rotZ) =0

(2) divB =0 B B B
Let’s try to find a solution 4 to the equation B = rot4

We start looking for a particular solution 4* of this kind:

A = (A:(x,y,z), A; (x,v,2), 0)

37



PROOF
Assuming B=rotA we obtain:

*

0A \ :
- ay =B, = A2 =—| B(xy,2)dz+F(x,)
Z U
G;X =B, = A (x,y,2)= J.Z B (x,y,2)dz+G(x,y)
Z Zy
oA’ - : OB
I ot L
ox 0y 2 Oy oy l
— : OB oF 0G OF 0G
But divB=0 = an+8By __9% > ,[ fdz+—-—=B = ———=B.(x,5,%)
Ox ay Oz 2 Oz Oox 8y ox 8y

:Bz(xayaz)_Bz(x’y’ZO)

F(x,y)=0

A solution to this equation is: { »
G(x.y)== [ B.(x.y.z,)dy

e y Z
(0 8.2z [ Bryzdy, [ B (v v.2z, 0]

The general solution can be found using B=rotA

Tk

rot(Z—Z*):E—E:O = A-A = grady = A=A+ grady

38



WHICH STATEMENT IS WRONG?

1- The curl of a vector field is a scalar
2- The curl is related to the line integral of a field
along a closed curve

3- Stokes’ theorem translates a line integral into a
surface integral

4- The Stokes’ theorem can be applied only to a
closed curve

39
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