VEKTORANALYS HT 2021 CELTE / CENMI

ED1110

GAUSS' THEOREM and STOKES' THEOREM

Kursvecka 3

Kapitel 8-9 (*Vektoranalys*, 1:e uppl, Frassinetti/Scheffel)

version: 15-sept-2021

This week

Gauss' theorem:

- Divergence
 - definition
 - physical meaning
- The Gauss' theorem

Stokes' theorem:

- Curl
 - definition
 - physical meaning
- Stokes' theorem
- The Green's formula in the plane
- Culf-free fields and scalar potentials
- Solenoidal fields and vector potentials

Connections with previous and next topics

Gauss' theorem:

- vector fields
- It can be used to calculate the flux (in some specific cases)
- Applications: in "Electromagnetic Theory" to calculate the flux of electric field (i.e. with the Gauss' law).

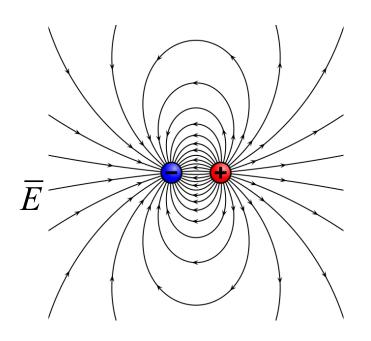
Stokes' theorem:

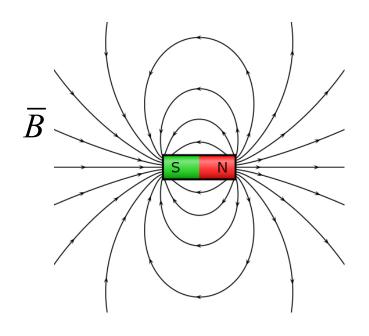
- Vector fields
- It can be used to calculate line integrals (in some specific cases).
- Important implication for the conservative fields and the potential
- Applications in "Electromagnetic Theory" to calculate the magnetic field (Ampere's law).

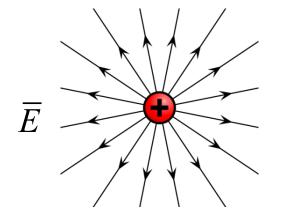
TARGET PROBLEM: the 1st and 2nd equations of Maxwell

ELECTRIC FIELD $\ \overline{E}$

MAGNETIC FIELD \overline{B}





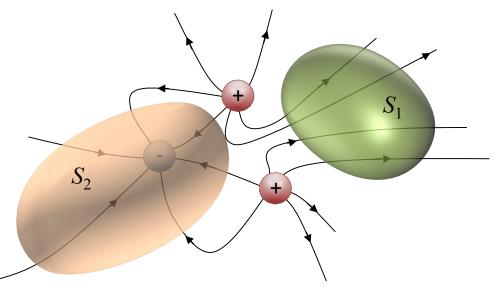


Magnetic monopoles do not exist in nature.

How can we express this information for \overline{E} and \overline{B} using the mathematical formalism?

TARGET PROBLEM: the 1st equation of Maxwell

Let's consider some ELECTRIC CHARGES and two closed surfaces, S₁ and S₂



S₁ does not contain any charge. It has no sources and no sinks: no field lines destroyed and no field lines created inside S1

$$\iint_{S_1} \overline{E} \cdot d\overline{S} = 0$$

S₂ contains a negative charge (a sink). The field lines are destroyed inside S2

$$\iint\limits_{S_2} \overline{E} \cdot d\overline{S} < 0$$

$$\int\limits_{S} \overline{E} \cdot d\overline{S} = \frac{Q}{\mathcal{E}_{0}} \qquad \text{Gauss' law} \qquad \text{(see the 6th week of this course for details or "Teoretisk elektroteknik")}$$

We want to find: (1) the differential form of the Gauss' law.

(i.e. to express the Guass's law without using integrals)

- (2) the corresponding expressions for the magnetic field
- the <u>divergence</u> of a vector field \overline{A} , $div \overline{A}$
- the <u>Gauss's theorem</u> $\iint_{S} \overline{A} \cdot d\overline{S} = \iiint_{V} div \overline{A} dV$

THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system , the divergence of a vector field \overline{A} is:

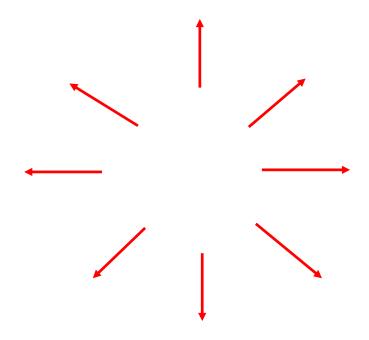
DEFINITION

$$div\overline{A} \equiv \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (1)

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

- Assume that \overline{A} is the velocity field of a gas.
- If heated, the gas expands creating
 a velocity field that diverges from the heating position.
 Then, the divergence of A at the heating point is positive



THE DIVERGENCE (DIVERGENSEN)

In a Cartesian coordinate system , the divergence of a vector field $\overline{A}\,$ is:

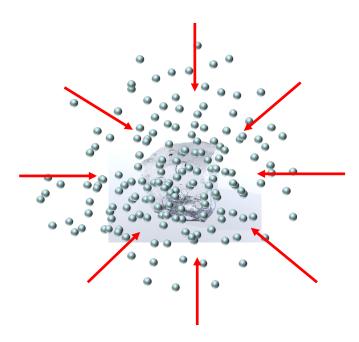
DEFINITION

$$div\overline{A} \equiv \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (1)

It is a measure of how much the field diverges (or converges) from (to) a point.

EXAMPLE:

- Assume that \overline{A} is the velocity field of a gas.
- If heated, the gas expands creating a velocity field that diverges from the heating position. Then, the divergence of \overline{A} at the heating point is positive
- If cooled, the gas contracts creating a velocity field that converges to the cooling position.
 The divergence of the field is negative
- At the heating position we have a source of the velocity field
- At the cooling position we have a sink of the velocity field



The divergence is a measure of the strength of sources and sinks.

(This is only "intuitive". From a formal point of view, this statement will be clear using the Gauss' theorem)

$$\iint_{S} \overline{A} \cdot d\overline{S} = \iiint_{V} div \overline{A} dV$$

(2)

where <u>S is a closed surface</u> that forms the boundary of the volume V and \overline{A} is a continuously differentiable vector field defined on V.



$$\begin{aligned} dxdy &= dS_2 \hat{n}_2 \cdot \hat{e}_z = d\overline{S}_2 \cdot \hat{e}_z \\ dxdy &= -dS_1 \hat{n}_1 \cdot \hat{e}_z = -d\overline{S}_1 \cdot \hat{e}_z \end{aligned}$$

$$\iiint_{V} div \overline{A} dV = \iiint_{V} \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right) dx dy dz =$$

$$\iiint_{V} \frac{\partial A_{x}}{\partial x} dx dy dz + \iiint_{V} \frac{\partial A_{y}}{\partial y} dx dy dz + \iiint_{V} \frac{\partial A_{z}}{\partial z} dx dy dz$$

Let's calculate the last term:

$$\iiint\limits_{V} \frac{\partial A_{z}}{\partial z} dx dy dz = \iint\limits_{S_{p}} dx dy \int\limits_{f_{1}(x,y)}^{f_{2}(x,y)} \frac{\partial A_{z}}{\partial z} dz = \iint\limits_{S_{p}} \left[A_{z}(x,y,f_{2}(x,y)) - A_{z}(x,y,f_{1}(x,y)) \right] dx dy = 0$$

dxdy is the projection on S_p of the small element surfaces on dS_1 and dS_2 .

Therefore:
$$dxdy = -\hat{e}_z \cdot \hat{n}_1 dS_1 = \hat{e}_z \cdot \hat{n}_2 dS_2$$

$$= \iint_{S_2} A_z(x, y, f_2(x, y)) \hat{e}_z \cdot \hat{n}_2 dS_2 + \iint_{S_1} A_z(x, y, f_1(x, y)) \hat{e}_z \cdot \hat{n}_1 dS_1 = \iint_{S} A_z \hat{e}_z \cdot \hat{n} dS$$

Which means:
$$\iiint_{V} \frac{\partial A_{z}}{\partial z} dV = \iint_{S} A_{z} \hat{e}_{z} \cdot \hat{n} dS$$
 (3)

PROOF

In the same way we get:

$$\iiint_{V} \frac{\partial A_{x}}{\partial x} dV = \iint_{S} A_{x} \hat{e}_{x} \cdot \hat{n} dS$$
(4)

$$\iiint_{V} \frac{\partial A_{y}}{\partial y} dV = \iint_{S} A_{y} \hat{e}_{y} \cdot \hat{n} dS$$
 (5)

Adding together equations (3), (4) and (5) we finally obtain:

$$\iiint\limits_{V} div\bar{A}dV = \iiint\limits_{V} \frac{\partial A_{x}}{\partial x} dxdydz + \iiint\limits_{V} \frac{\partial A_{y}}{\partial y} dxdydz + \iiint\limits_{V} \frac{\partial A_{z}}{\partial z} dxdydz =$$

$$\iint\limits_{S} A_{x}\hat{e}_{x} \cdot \hat{n}dS + \iint\limits_{S} A_{y}\hat{e}_{y} \cdot \hat{n}dS + \iint\limits_{S} A_{z}\hat{e}_{z} \cdot \hat{n}dS = \iint\limits_{S} \bar{A} \cdot d\bar{S}$$

Rearrange in logic order the steps to prove the Gauss' theorem

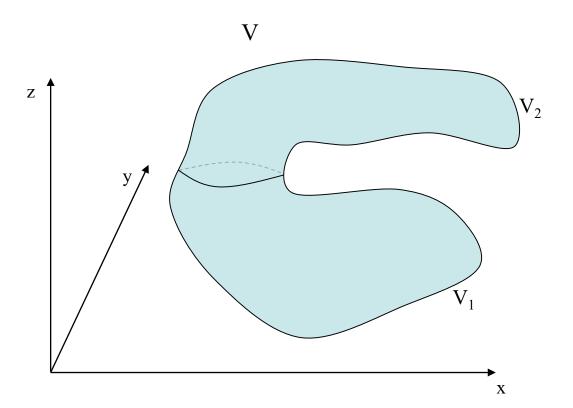
- Add all the three terms together in order to obtain the flux of \overline{A} .
- Write down the volume integral of $\operatorname{div} \overline{A}$
- Consider the projection of the surface element on the xy plane, it will be dxdy. The projection will identify a infinitesimal surface element (dS_2) on the lower surface.
- Consider a closed surface.
- Split the volume integral into three terms. Then:
 - (a) consider only the term which depends on the z-derivative of A_z ,
 - (b) remove the z-derivative by solving the integral in dz, (what will remain is just the integral in dxdy)
 - (c) express dxdy in order to obtain dS_1 and dS_2 ,
 - (d) re-arrange the integrals in dS_1 and dS_2 in order to have obtain a flux integral of $(0,0,A_2)$.
- Repeat the same for the terms which depend on the x-derivative of A_x and on the y-derivative of A_y .
- Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element dS_1 on the upper surface.
- Write the expression that relates dxdy to dS_1 and dS_2 .

Rearrange in logic order the steps to prove the Gauss' theorem

- 8 Add all the three terms together in order to obtain the flux of \overline{A} .
- 5 Write down the volume integral of $\operatorname{div} \overline{A}$
- 3 Consider the projection of the surface element on the xy plane, it will be dxdy. The projection will identify a infinitesimal surface element (dS_2) on the lower surface.
- 1 Consider a closed surface.
- 6 Split the volume integral into three terms. Then:
 - 6(a) consider only the term which depends on the z-derivative of A_z ,
 - 6(b) remove the z-derivative by solving the integral in dz, (what will remain is just the integral in dxdy)
 - 6(c) express dxdy in order to obtain dS_1 and dS_2 ,
 - 6(d) re-arrange the integrals in dS_1 and dS_2 in order to have obtain a flux integral of $(0,0,A_2)$.
- 7 Repeat the same for the terms which depend on the x-derivative of A_x and on the y-derivative of A_y .
- 2 Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element dS_1 on the upper surface.
- 4 Write the expression that relates dxdy to dS_1 and dS_2 .

PROOF

What if we consider a more complicated volume?



We divide the volume V in smaller and "simpler" volumes

$$V = V_1 + V_2 + \dots = \sum_{i} V_i$$

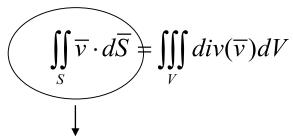
$$\iiint\limits_{V}divAdV = \sum\limits_{i}\iiint\limits_{V_{i}}divAdV =$$

$$\sum_{i} \iint_{S_{i}} A \cdot dS = \iint_{S} A \cdot dS$$

PHYSICAL MEANING

Suppose that $\overline{v}(\overline{r})$ is the velocity field of a gas

Let's apply the Gauss' theorem to a volume V of the gas

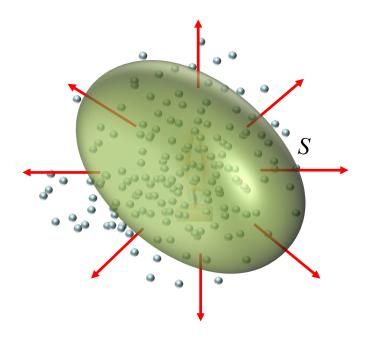


This term is the gas volume per second [m³/s] that flows outwards (or inwards) through a closed surface S

If there are no sinks and no sources:

the amount of gas that flows inwards through a closed surface S is equal to the amount of gas that flows outwards.

This implies that the flow $\iint_S \overline{v} \cdot d\overline{S}$ is zero. Therefore, $div(\overline{v}) = 0$



TARGET PROBLEM

Magnetic monopoles do not exist in nature.

How can this statement be mathematically expressed?

Magnetic monopoles do not exists \Rightarrow the flux of **B** is zero

Let's apply the Gauss' theorem to the magnetic field:

Gauss
$$\iint_{S} \overline{B} \cdot d\overline{S} = \iiint_{V} div \overline{B} dV$$

$$\iint_{S} \overline{B} \cdot d\overline{S} = 0$$

$$\oint_{S} \overline{B} \cdot d\overline{S} = 0$$

Exercise: apply the Gauss' theorem

to the Gauss' law: $\iint_{S} \overline{E} \cdot d\overline{S} = \frac{Q}{\varepsilon_0}$

where S is a closed surface and Q the total charge inside S.

Tip: Q is related to the charge density ρ_c via $Q = \int_V \rho_c dV$

One of the four Maxwell's equations

WHICH STATEMENT IS WRONG?

- 1- The divergence of a vector field is a scalar
- 2- The divergence is related to the flux
- 3- The Gauss' theorem translates a surface integral into a volume integral
- 4- The Gauss' theorem can be applied also to an open surface

VEKTORANALYS

CURL (ROTATIONEN)

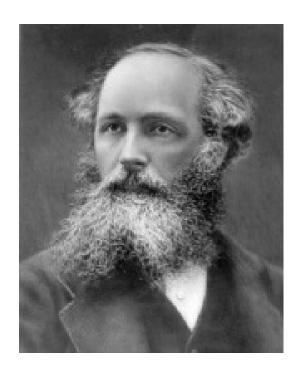
and

STOKES' THEOREM

THE CURRENT DENSITY

One of the main properties of electromagnetism is that a current density \overline{j} produces a magnetic field \overline{B} . The current density and the magnetic field are related via the 4th Maxwell's equation:

$$\mathit{rot}\overline{B} = \mu_0\overline{j}$$
 (in stationary condition) See the "Teoretisk elektroteknik" course.



THE CURRENT DENSITY

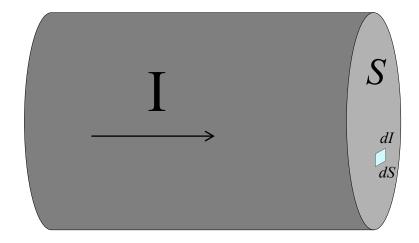
One of the main properties of electromagnetism is that a current density \overline{j} produces a magnetic field \overline{B} . The current density and the magnetic field are related via the 4th Maxwell's equation:

$$\mathit{rot}\overline{B} = \mu_0\overline{j}$$
 (in stationary condition) See the "Teoretisk elektroteknik" course.

Consider a conductor with an electric current *I*.

Assume that the section of the conductor perpendicular to *I* has area S.

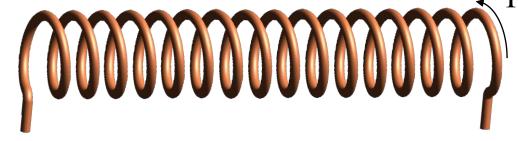
• If the electric current is uniform, then the current density \bar{j} is: $|\bar{j}| = \frac{I}{\bar{j}}$



TARGET PROBLEM

$$\begin{cases} rot\overline{B} = \mu_0\overline{j} & \text{(4th Maxwell's equation in stationary conditions)} \\ I = \iint\limits_{S} \overline{j} \cdot d\overline{S} & \end{cases}$$

- Calculate the magnetic field generated by the current I
- Calculate the magnetic field inside a solenoid



We need:

- (1) the definition of "curl" (or rotor) of a vector field: rot A
- (2) the Stokes' theorem $\oint_L \overline{A} \cdot d\overline{r} = \iint_S rot \overline{A} \cdot d\overline{S}$

THE CURL (ROTATIONEN) rot A

DEFINITION (in a Cartesian coordinate system)

$$rot\overline{A} = \begin{vmatrix} \hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} = \begin{pmatrix} \frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z}, & \frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x}, & \frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \end{pmatrix}$$

rot stands for "rotation"

In fact, the curl is a measure of how much the direction of a vector field changes in space, i.e. how much the field "rotates".

In every point of the space, rot A is a vector whose length and direction describe the rotation of the field \overline{A} .

The direction is the axis of rotation of A The magnitude is the magnitude of rotation of \overline{A}

THE CURL rot A

PHYSICAL MEANING

Consider the rotation of a rigid body around the z-axis.

The position vector of a point P on located at the distance ρ from the origin is:

$$\overline{r} = (x, y, 0)$$
 with
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

If P rotates with constant angular velocity ω , the angle φ is : $\varphi(t) = \omega t$.

$$\begin{cases} x(t) = \rho \cos(\omega t) \\ y(t) = \rho \sin(\omega t) \end{cases}$$

The velocity of the point P is:

$$v_{x}(t) = \frac{dx(t)}{dt} = -\rho\omega\sin\omega t = -\omega y(t)$$

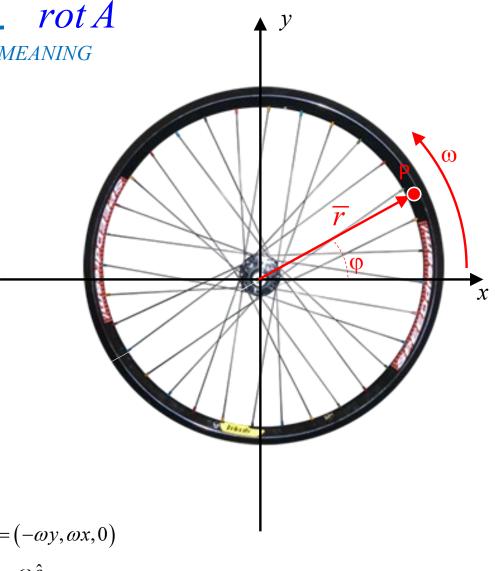
$$v_{y}(t) = \frac{dy(t)}{dt} = \rho\omega\cos\omega t = \omega x(t)$$

$$\Rightarrow \overline{v} = (-\omega y, \omega x, 0)$$

$$\overline{\omega} = \omega \hat{e}_{z}$$

$$\Rightarrow \overline{v} = (-\omega y, \omega x, 0)$$

$$\overline{\omega} = \omega \hat{e}_{z}$$

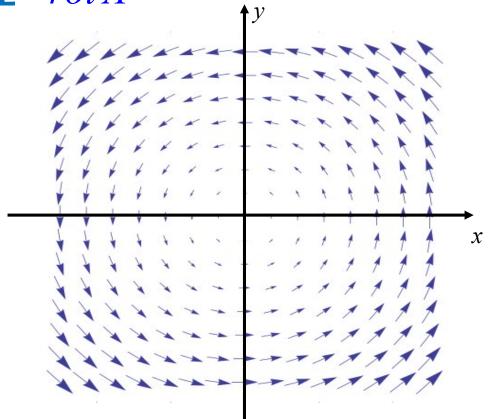


THE CURL rot A

EXAMPLE

$$\overline{v}(x, y, z) = (-\omega y, \omega x, 0)$$

Exercise: calculate the curl of v



Direction: the direction is the axis of rotation, i.e. perpendicular to

the plane of the figure

The sign (negative, in this case) is determined by the right-hand rule

Magnitude: the amount of rotation

In this example, it is constant and independent of the position, i.e.

the amount of rotation is the same at any point.

THE CURL rot A

PHYSICAL MEANING

Consider the rotation of a rigid body around the z-axis.

The position vector of a point P on located at the distance ρ from the origin is:

$$\overline{r} = (x, y, 0)$$
 with
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

If P rotates with constant angular velocity ω , the angle φ is : $\varphi(t) = \omega t$.

$$\begin{cases} x(t) = \rho \cos(\omega t) \\ y(t) = \rho \sin(\omega t) \end{cases}$$

The velocity of the point P is:

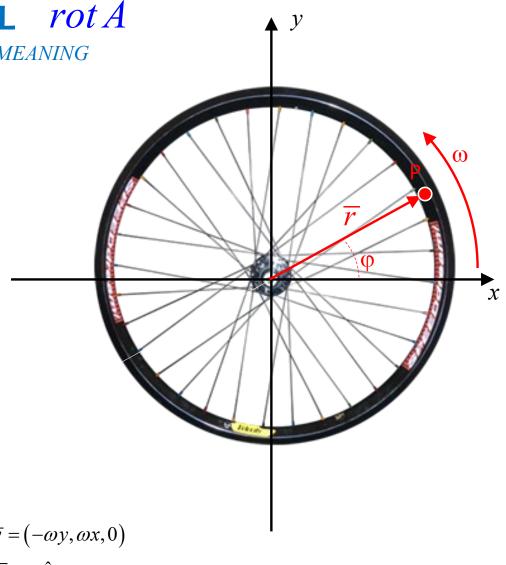
$$v_{x}(t) = \frac{dx(t)}{dt} = -\rho\omega\sin\omega t = -\omega y(t)$$

$$v_{y}(t) = \frac{dy(t)}{dt} = \rho\omega\cos\omega t = \omega x(t)$$

$$\Rightarrow \overline{v} = (-\omega y, \omega x, 0)$$

$$\overline{\omega} = \omega \hat{e}_{z}$$

Therefore
$$rot \, \overline{v} = (0, 0, 2\omega)$$
 $\Rightarrow \overline{\omega} = \frac{1}{2} rot \, \overline{v}$

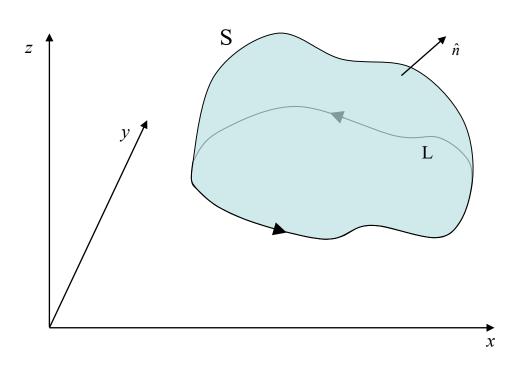


$$\oint_{L} \overline{A} \cdot d\overline{r} = \iint_{S} rot \overline{A} \cdot d\overline{S}$$



where \bar{A} is a vector field, \underline{L} is a closed curve and S is a surface whose boundary is defined by L.

L must be positively oriented relatively to S. Both L and S must be "stykvis glatta". \bar{A} must be continuously differentiable on S.



PROOF

Five steps:

1. We divide S in "many" "smaller" (infinitesimal) surfaces:

$$S = \sum_{i} S^{i}$$

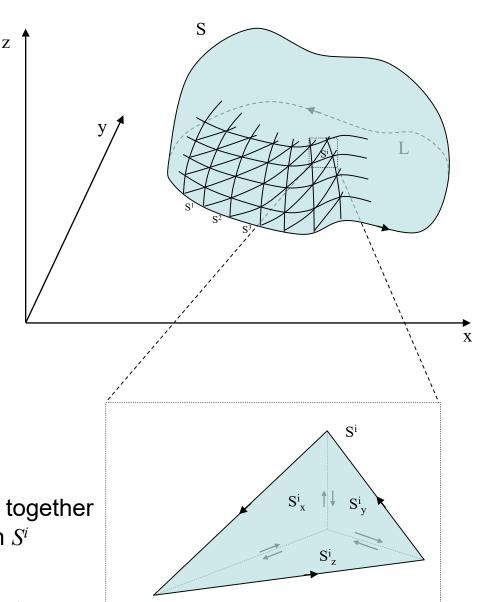
2. We project S^i on:

the xy-plane S_z^i the yz-plane S_x^i

the xz-plane S_y^i

3. We prove the Stokes' theorem on S_z^i , (the only difficult part)

- 4. We add the results for the projections together and we obtain the Stokes' theorem on S^i
- 5. We add the results for S^i together and we obtain the Stokes' theorem on S



PROOF

Let's consider the plane surface S_z^i located in the xy-plane (i.e. z=constant=z₀) with boundary defined by the curve L_z^i

 \hat{e}_z

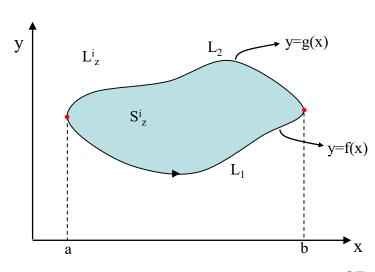
Let's calculate
$$\oint_{L_z^i} \overline{A} \cdot d\overline{r}$$

$$\oint_{L_z^i} \overline{A} \cdot d\overline{r} = \oint_{L_z^i} A_x(x, y, z_0) dx + A_y(x, y, z_0) dy + A_z(x, y, z_0) dz$$
Term 1 Term 2 Term 3

Term 3 =0 $(z=constant! \Rightarrow dz=0)$

Term 1

$$\oint_{L_z^i} A_x(x, y, z_0) dx = \oint_{L_1 + L_2} A_x(x, y, z_0) dx =
\int_{L_1} A_x(x, y, z_0) dx + \int_{L_2} A_x(x, y, z_0) dx =
\int_a^b A_x(x, f(x), z_0) dx + \int_b^a A_x(x, g(x), z_0) dx =$$



PROOF

$$= \int_{a}^{b} A_{x}(x, f(x), z_{0}) dx - \int_{a}^{b} A_{x}(x, g(x), z_{0}) dx = \int_{a}^{b} \left[A_{x}(x, f(x), z_{0}) - A_{x}(x, g(x), z_{0}) \right] dx =$$

$$\int_{a}^{b} \int_{g(x)}^{f(x)} \frac{\partial A_{x}(x, y, z_{0})}{\partial y} dx dy = -\int_{a}^{b} \int_{f(x)}^{g(x)} \frac{\partial A_{x}}{\partial y} dx dy = -\iint_{S^{i}} \frac{\partial A_{x}}{\partial y} dx dy$$

Therefore we get:

Term 1
$$\oint_{L_z^i} A_x(x, y, z_0) dx = -\iint_{S^i} \frac{\partial A_x}{\partial y} dx dy$$

In a similar way:

Term 2
$$\oint_{L^i_z} A_y(x,y,z_0) dx = \iint_{S^i_z} \frac{\partial A_y}{\partial x} dx dy$$
 It is the z-component of $rot\overline{A}$!! Adding Term 1, Term 2 and Term 3:
$$\oint_{L^i_z} \overline{A} \cdot d\overline{r} = \iint_{S^i} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) dx dy$$

So can rewrite it as:

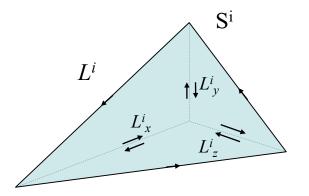
$$\oint_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S_z^i} (rot\overline{A})_z dxdy = \iint_{S_z^i} (rot\overline{A})_z \hat{e}_z \cdot d\overline{S}$$

$$dxdy = \hat{e}_z \cdot \hat{n}dS = \hat{e}_z \cdot d\overline{S}$$

In a similar way we have:

$$\oint_{L_{y}^{i}} \overline{A} \cdot d\overline{r} = \iint_{S^{i}} (rot\overline{A})_{y} \hat{e}_{y} \cdot d\overline{S}$$

$$\oint_{L_{x}^{i}} \overline{A} \cdot d\overline{r} = \iint_{S^{i}} (rot\overline{A})_{x} \hat{e}_{x} \cdot d\overline{S}$$



Now let's add everything together:

$$\oint_{L_x^i} \overline{A} \cdot d\overline{r} + \oint_{L_y^i} \overline{A} \cdot d\overline{r} + \oint_{L_z^i} \overline{A} \cdot d\overline{r} = \oint_{\underline{L}^i} \overline{A} \cdot d\overline{r}$$

So can rewrite it as:

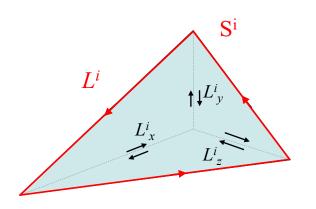
$$\oint_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S_z^i} (rot\overline{A})_z \, dx \, dy = \iint_{S_z^i} (rot\overline{A})_z \, \hat{e}_z \cdot d\overline{S}$$

$$\overbrace{dxdy = \hat{e}_z \cdot \hat{n}dS = \hat{e}_z \cdot d\overline{S}}$$

In a similar way we have:

$$\oint_{L_{y}^{i}} \overline{A} \cdot d\overline{r} = \iint_{S^{i}} (rot\overline{A})_{y} \hat{e}_{y} \cdot d\overline{S}$$

$$\oint_{L_{x}^{i}} \overline{A} \cdot d\overline{r} = \iint_{S^{i}} (rot\overline{A})_{x} \hat{e}_{x} \cdot d\overline{S}$$



Now let's add everything together:

$$\int_{L_{x}^{i}} \overline{A} \cdot d\overline{r} + \int_{L_{y}^{i}} \overline{A} \cdot d\overline{r} + \int_{L_{z}^{i}} \overline{A} \cdot d\overline{r} = \int_{L_{z}^{i}} \overline{A} \cdot d\overline{r}$$

$$\iint_{S^{i}} (rot\overline{A})_{x} \hat{e}_{x} \cdot d\overline{S} + \iint_{S^{i}} (rot\overline{A})_{y} \hat{e}_{y} \cdot d\overline{S} + \iint_{S^{i}} (rot\overline{A})_{z} \hat{e}_{z} \cdot d\overline{S} = \iint_{S^{i}} rot\overline{A} \cdot d\overline{S}$$

PROOF

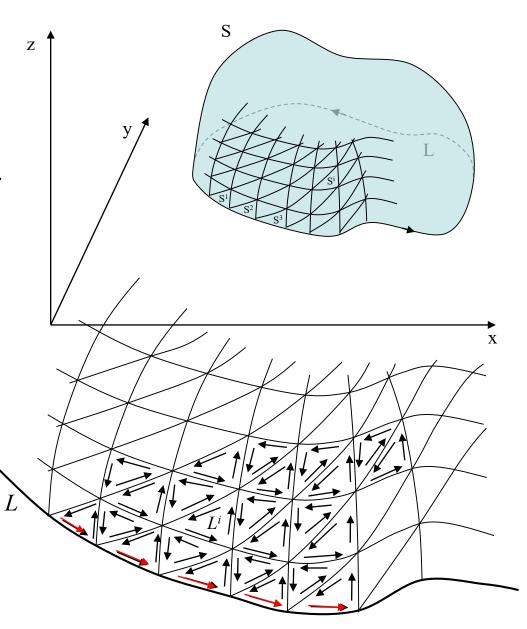
$$\oint_{\underline{I}^i} \overline{A} \cdot d\overline{r} = \iint_{\underline{S}^i} rot \overline{A} \cdot d\overline{S}$$

But we are interested in the whole S. So we add these small contributions altogether:

$$\sum_{i} \iint_{S^{i}} rot \overline{A} \cdot d\overline{S} = \iint_{S} rot \overline{A} \cdot d\overline{S}$$

$$\underbrace{\sum_{i} \int_{L^{i}} \overline{A} \cdot d\overline{r}}_{i} = \int_{L} \overline{A} \cdot d\overline{r}$$

$$\oint_{L} \overline{A} \cdot d\overline{r} = \iint_{S} rot \overline{A} \cdot d\overline{S}$$



Rearrange in logic order the steps to prove the Stokes' theorem

- Prove the Stokes' theorem on S_z^i :
 - (a) Write the line integral of the vector field along the boundary of S^i_{z} and split the integral into three terms.
 - (b) Consider only the integral in dx and prove that $\int_{L_z} A_x(x,y,z_0) dx = -\iint_{S^1} \frac{\partial A_x}{\partial y} dx dy$
 - (c) -Repeat the same for the integral in dy and dz
 - (d) -Add the three integrals in dx, dy and dz to obtain $\int_{L_z} \overline{A} \cdot d\overline{r} = \iint_{S^z} (rot\overline{A})_z dxdy$
 - (e) -Rewrite dxdy to obtain $\int_{L^i_z} \overline{A} \cdot d\overline{r} = \iint_{S^i} (rot\overline{A})_z \hat{e}_z \cdot d\overline{S}$
- Prove the Stokes' theorem on S: add together all the expressions obtained for S^i
- Consider a closed path and a surface whose boundary is defined by the closed path.
- Prove the Stokes' theorem on S^i :
 - (a) -Repeat the same procedure for $S^i_{\ x}$ and $S^i_{\ y}$
 - (b) add together the expressions for the integrals in S^i_x to S^i_y and S^i_z obtaining: $\int_{L^i} \overline{A} \cdot d\overline{r} = \iint_{S^i} rot \overline{A} \cdot d\overline{S}$
- Divide the surface in small areas S^i and consider the projection of S^i on the xy, yz, xz planes

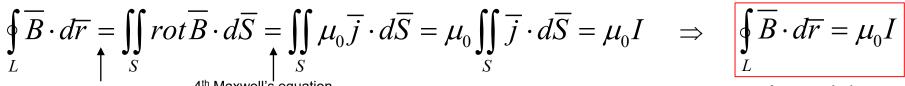
Rearrange in logic order the steps to prove the Stokes' theorem

- 3 Prove the Stokes' theorem on S_{z}^{i} :
 - 3.(a) Write the line integral of the vector field along the boundary of S_z^i and split the integral into three terms.
 - 3.(b) Consider only the integral in dx and prove that $\int_{L_z^i} A_x(x,y,z_0) dx = -\iint_{S_z^i} \frac{\partial A_x}{\partial y} dx dy$
 - 3.(c) -Repeat the same for the integral in dy and dz
 - 3.(d) -Add the three integrals in dx, dy and dz to obtain $\int_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S^i} (rot \overline{A})_z dx dy$
 - 3.(e) -Rewrite dxdy to obtain $\int_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S^i} (rot\overline{A})_z \hat{e}_z \cdot d\overline{S}$
- 5 Prove the Stokes' theorem on S: add together all the expressions obtained for S^i
- 1 Consider a closed path and a surface whose boundary is defined by the closed path.
- 4 Prove the Stokes' theorem on S^i :
 - 4.(a) -Repeat the same procedure for $S^i_{\ x}$ and $S^i_{\ y}$
 - 4.(b) add together the expressions for the integrals in S_x^i to S_y^i and S_z^i obtaining: $\int_{L^i} \overline{A} \cdot d\overline{r} = \iint_{C_x^i} rot \overline{A} \cdot d\overline{S}$
 - 2 Divide the surface in small areas S^i and consider the projection of S^i on the xy,yz,xz planes

TARGET PROBLEM

$$\begin{cases} rot\overline{B} = \mu_0\overline{j} & ext{ (4th Maxwell's equation in stationary conditions)} \ I = \iint\limits_S \overline{j} \cdot d\overline{S} \end{cases}$$

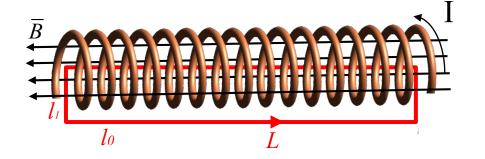
Using the Stokes' theorem we can find an expression that relates directly \bar{B} with I:



Stokes' theorem

4th Maxwell's equation (in stationary condition)

Ampere's law



Using the Ampere's law:

$$\int_{L} \overline{B} \cdot d\overline{r} = \mu_{0} NI$$

$$\int_{L} \overline{B} \cdot d\overline{r} = |\overline{B}| l_{0} + 0 l_{0} + 0 l_{1} + 0 l_{1} = |\overline{B}| l_{0}$$

$$\Rightarrow |\overline{B}| = \frac{\mu_{0} NI}{l_{0}}$$

THE GREEN FORMULA IN THE PLANE

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{L} \left(P dx + Q dy \right)$$

PROOF

We can start from Stokes' theorem

$$\oint_L \overline{A} \cdot d\overline{r} = \iint_S rot \overline{A} \cdot d\overline{S}$$

$$\oint_{L} \overline{A} \cdot d\overline{r} = \oint_{L} \left(A_{x} dx + A_{y} dy + A_{z} dz \right) = \oint_{L} \left(A_{x} dx + A_{y} dy \right)$$
But we are in a plane,

But we are in a plane, so we can assume $A=(A_x,A_y,0)$

$$\iint_{S} rot \overline{A} \cdot d\overline{S} = \iint_{S} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) \underbrace{\hat{e}_{z} \cdot \hat{e}_{z}}_{=1} dx dy$$

$$\begin{vmatrix} \hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \end{vmatrix}$$

$$\begin{cases} \iint_{D} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) dx dy = \oint_{L} \left(A_{x} dx + A_{y} dy \right) \end{cases}$$

which is the Green formula for $P=A_x$ and $Q=A_y$

CURL FREE FIELD AND SCALAR POTENTIAL

(virvelfria fält och skalär potential)

DEFINITION: A vector field \overline{A} is "curl free" if $rot \overline{A} = 0$

Sometimes called "irrotational"

If \bar{A} is continuously derivable and defined in a simply connected domain, then:

THEOREM (9.3 in the textbook)

 $rot \ \overline{A} = 0 \Leftrightarrow \overline{A}$ has a scalar potential ϕ , $\overline{A} = grad\phi$

PROOF

(1)
$$rot \overline{A} = 0$$

$$\oint_{L} \overline{A} \cdot d\overline{r} = \iint_{S} rot \overline{A} \cdot d\overline{S} = 0$$

So, if the curl is zero, also the circulation is zero \Rightarrow then the field is conservative and has a scalar potential. See theorems 6.3 and 6.4 in the textbook or the slides of week 2.

(2)
$$\overline{A} = grad\phi$$

$$rot \ \overline{A} = rot \ grad\phi = rot \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right) = \begin{vmatrix} \hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \end{vmatrix} = \left(\frac{\partial}{\partial y} \frac{\partial \phi}{\partial z} - \frac{\partial}{\partial z} \frac{\partial \phi}{\partial y}, \dots, \dots \right) = (0, 0, 0)$$

SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION: A vector field \overline{B} is called **solenoidal** if $div\overline{B} = 0$

DEFINITION: \overline{A} is a vector potential of the vector field \overline{B} if $\overline{B} = rot\overline{A}$

THEOREM (9.4 in the book) $|\overline{B}|$ has a vector potential \overline{A} if and only if \overline{B} has divergence zero:

$$\overline{B} = rot\overline{A} \Leftrightarrow div\overline{B} = 0$$

PROOF

(1)
$$\overline{B}$$
 has a vector potential $\Rightarrow \overline{B} = rot\overline{A} \Rightarrow div\overline{B} = div(rot\overline{A}) = 0$

(2) $div\overline{B} = 0$ Let's try to find a solution \overline{A} to the equation $\overline{B} = rot \overline{A}$

We start looking for a particular solution A^* of this kind:

$$\overline{A}^* = (A_x^*(x, y, z), A_y^*(x, y, z), 0)$$

PROOF

Assuming $\bar{B} = rot \bar{A}$ we obtain:

$$-\frac{\partial A_{y}^{*}}{\partial z} = B_{x} \qquad \Rightarrow \qquad A_{y}^{*}(x, y, z) = -\int_{z_{0}}^{z} B_{x}(x, y, z) dz + F(x, y)$$

$$\frac{\partial A_{x}^{*}}{\partial z} = B_{y} \qquad \Rightarrow \qquad A_{x}^{*}(x, y, z) = \int_{z_{0}}^{z} B_{y}(x, y, z) dz + G(x, y)$$

$$\frac{\partial A_{y}^{*}}{\partial x} - \frac{\partial A_{x}^{*}}{\partial y} = B_{z} \qquad \Rightarrow \qquad -\int_{z_{0}}^{z} \frac{\partial B_{x}}{\partial x} dz + \frac{\partial F}{\partial x} - \int_{z_{0}}^{z} \frac{\partial B_{y}}{\partial y} dz - \frac{\partial G}{\partial y} = B_{z}$$

$$\downarrow \qquad \qquad \downarrow$$
But $div\bar{B} = 0 \Rightarrow \frac{\partial B_{x}}{\partial x} + \frac{\partial B_{y}}{\partial y} = -\frac{\partial B_{z}}{\partial z} \qquad \qquad \downarrow$

$$= B_{z}(x, y, z_{0}) - B_{z}(x, y, z_{0})$$

$$= B_{z}(x, y, z_{0}) - B_{z}(x, y, z_{0})$$

A solution to this equation is: $\begin{cases} F(x,y) = 0 \\ G(x,y) = -\int_{y_0}^{y} B_z(x,y,z_0) dy \end{cases}$

$$\overline{A}^* = \left(\int_{z_0}^z B_y(x, y, z) dz - \int_{y_0}^y B_z(x, y, z_0) dy, - \int_{z_0}^z B_x(x, y, z) dz, 0 \right)$$

The general solution can be found using $\overline{B} = rot \overline{A}$

$$rot(\overline{A} - \overline{A}^*) = \overline{B} - \overline{B} = 0 \implies \overline{A} - \overline{A}^* = grad\psi \implies \overline{A} = \overline{A}^* + grad\psi$$

WHICH STATEMENT IS WRONG?

1- The curl of a vector field is a scalar

- 2- The curl is related to the line integral of a field along a closed curve
- 3- Stokes' theorem translates a line integral into a surface integral
- 4- The Stokes' theorem can be applied only to a closed curve