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This week
 Line integrals

 Most common line integral: meaning and technique to calculate it
 Theorems on line integrals
 Circulation, conservative fields and potential
 Other types of line integrals
 The Biot-Savart law (a practical application very useful for TET)

 Flux integrals
 Meaning and definition
 The technique to calculate a flux integral
 The flux of the electric field through a sphere: a simple example very

useful for TET

If we have time (Monday afternoon):

 Solving 1-2 problems related to the Biot-Savart law: 
( )0

3

' '
( )

4 '
µ

π
× −

=
−∫

L

dr r rIB r
r r



Connections with previous and
next topics

Line integrals
 Vector fields (week 1)
 Curve parameterization and tangent vector (övningar in week 1)
 Conservative fields. (see also week 3)
 Stokes theorem (week 3)

It has important applications in physics and engineering: for example to calculate the 
work, to calculate the magnetic field produced by a wire (Biot-Savart law), the Ampere’s
law, the Faraday’s law…

Flux integrals
 Surface parameterization and normal vector (övningar in week 1)
 Gauss’ theorem (week 3)
 Special vector fields (week 6)
It has applications like the Guass’ law for the electric field or to calculate the flux of any
vector field on a surface

You are not allowed to use the words 
above to motivate and give examples in 

problem 1 of the home assignment



A person is pushing a mine cart along
a path L on a hill.

Calculate the “work” done to move
the cart from A to B.
For simplicity, assume there is any
friction.

TARGET PROBLEM
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PROBLEM
We have to push the cart along the path L defined as:

The weight (due to gravity force) points towards the negative direction of the z-
axis. Moreover, we have to face a strong wind (whose intensity and direction
depends on the position). Assume that the total force that we have to use is:

Calculate the work that we have to do to move the cart from the beginning
to the end of the pat.

(in a Cartesian coordinate system)

(in a Cartesian coordinate system)



We will arrive to the final answer in two steps:

1- The slope is constant

2- the slope is not constant
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Step 1:
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For ”very small” segments:

( ) ( )∫∑ ⋅≡∆⋅=
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( )irF

ir∆

( )∫ ⋅
L

rdrF is the line integral of along the path LF

We need to:
- introduce a VECTOR FIELD,  
- Define the  infinitesimal displacement along the path L

( )rF
rd

gF
(to be precise, we should change sign to calculate 
the work done by the person)
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L

F dr⋅∫

ˆxF xe=
2

:
: (0,0,0) : (1,1,0)

 =



y x
L

from A to B

with

In the slides we will show how to calculate a simple line integral.
We will calculate the following integral, step by step



VECTOR FIELD

A vector field associates a vector (x,y,z) to each point (x,y,z) of the space.

Examples:  - velocity distribution in a fluid
- magnetic field around a magnet
- electric field around an electric charge

Two typical ways to represent a vector field:

• The arrow length is proportional 
to the field amplitude

• The arrow direction shows the field 
direction

1- Arrow field

• The tangent to the curves is parallel
to the vector field in all points.

• The density of the lines is proportional
to the strength of the field.

2- Line field

A
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VECTOR FIELD
The airplane wing example (velocity field of air around a wing)

High velocity (horizontal)Low velocity (horizontal)

High velocity (horizontal)Low velocity (horizontal)
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EXAMPLE

10

Consider the following vector field: ˆ( ) = xF r xe

x

y

x

y

x

y

x

y

(a) (b)
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and THE LINE INTEGRAL
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( ) ( ( ))
b

L a

drF r dr F r u du
du

⋅ = ⋅∫ ∫
So, the line integral
can be calculated as:
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EXERCISE: Calculate with on the curve( )
L

F r dr⋅∫ ˆ( ) = xF r xe
2

:
: (0,0,0) : (1,1,0)

 =



y x
L

from A to B



LINE INTEGRAL (some useful properties)

L
A

B

DEFINITION: The line integral of        along a closed curve C is called 
circulation of a      along C:

( )
C

A r dr⋅∫

A
A ”cirkulationen” in swedish

-L

The curve –L has the same points as the curve 
L, but opposite direction
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THEOREM  1
(6.1 in the textbook)

Proof:

( ) ( )
L L

F r dr F r dr
−

⋅ = − ⋅∫ ∫
( ) ( ( ))

( ) ( ( )) ( ( )) ( )

b

L a

a b

L b a L

drF r dr F r u du
du
dr drF r dr F r u du F r u du F r dr
du du−

⋅ = ⋅

⋅ = ⋅ = − ⋅ = − ⋅

∫ ∫

∫ ∫ ∫ ∫

DEFINITION:

DEFINITION: assume that the curve L consists of a finite number of curves L1, L2,…  Then L=L1+L2+…

L1

L2

B

A
C

1 2

( ) ( ) ( ) ...
L L L

F r dr F r dr F r dr⋅ = ⋅ + ⋅ +∫ ∫ ∫THEOREM  2
(6.2 in the textbook)

1 2

( ) ( ) ( ( )) ( ( )) ( ( )) ( )
b c c

L L a b a L

dr dr drF r dr F r dr F r u du F r u du F r u du F r dr
du du du

⋅ + ⋅ = ⋅ + ⋅ = ⋅ = ⋅∫ ∫ ∫ ∫ ∫ ∫Proof:



CONSERVATIVE FIELDS (konservativt)

THEOREM  3 (6.3 in the textbook)

The circulation of      along all closed curves C is zero if and only if 
for all points P and Q the line integral of      from P to Q is independent  
from the integration path between P and Q.

PROOF
L1

L2P

Q

(2) The line integral from P to Q is independent from the path ⇒ the circulation is zero.

1 2 1 2

( ) ( ) ( ) ( )
L L L L L

A r dr A r dr A r dr A r dr
−

⋅ = ⋅ = ⋅ − ⋅∫ ∫ ∫ ∫ 1 2

( ) ( )
L L

A r dr A r dr⋅ = ⋅∫ ∫
The line integral is independent 
from the integration path

1 2

( ) ( )
L L

A r dr A r dr⋅ = ⋅∫ ∫

1 2 1 2

( ) ( ) ( ) ( )
L L L L L

A r dr A r dr A r dr A r dr
−

⋅ = ⋅ = ⋅ − ⋅∫ ∫ ∫ ∫
( ) 0

L
A r dr⋅ =∫

The circulation is zero

DEFINITION: A vector field      is called conservative if:                                for any C( ) 0
C

A r dr⋅ =∫A

A

Assume that L1 and L2 are two curves from P to Q.
Then L=L1-L2 is a closed curve.

( ) 0
L

A r dr⋅ =∫
(1) The circulation is zero ⇒ the line integral from P to Q is independent from the path

A
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LINE INTEGRAL and potential
THEOREM  4 (6.4 in the textbook)

( ) ( ) ( )
Q

P
A r dr q pφ φ⋅ = −∫

This means that the line integral is independent from the integration path L
and depends only on the starting point and on the ending point

PROOF
Using the chain rule for the partial derivative:

( ) , , , ,

( ( )) ( ) ( )

q q

L p p

q q

p p

dr dx dy dzA r dr grad du du
du x y z du du du

dx dy dz ddu r u du q p
x du y du z du du

φ φ φφ

φ φ φ φ φ φ

 ∂ ∂ ∂  ⋅ = ⋅ = ⋅ =   ∂ ∂ ∂   
 ∂ ∂ ∂

= + + = = − ∂ ∂ ∂ 

∫ ∫ ∫

∫ ∫

Or, easier: ( ) ( ) ( )
q

L L p
A r dr grad dr d q pφ φ φ φ⋅ = ⋅ = = −∫ ∫ ∫

A gradφ=
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Consider a curve L described by the parameterization           and two points P and Q
on L defined by                 and                 then, if                    : 

( )r u
( )Pr r p= ( )Qr r q=



OTHER KINDS OF LINE INTEGRALS

• It is possible to combine scalar and vector line elements in many 
different ways along a curve L and thus get different kinds of line integrals

• Some examples: ( )
L

r dsφ∫

( )
L

r drφ∫

( )
L

A r dr×∫
• To calculate the integrals:

[ ]
( )
, :

r r u
L a b where u a b

dr drdr du or ds du
du du

→

→ →

= =

Look at Example 6.3 in the book. 
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TARGET PROBLEM

The force is:

The path is    L: with  u:0 → 4π

Calculate the work from P:  (1,0,0) till Q:  (1,0,4π)

( ( )) ( (sin ) , (cos ) , 1)

( sin ,cos ,1)

F r u u u u u
dr u u
du

= − −

= −
⇒

4

0
( ) ( ( ))

b

L a

drW F r dr F r u du
du

π=

=
= ⋅ =∫ ∫

2 2

2 2

( ( )) ( sin cos 1)

(sin cos ) 1 1

drF r u u u u u
du

u u u u

⋅ = + − =

= + − = −

424 2

0
0

( ) ( 1) 8 4
2L

uW F r dr u du u
π

π
π π

 
= ⋅ = − = − = − 

 
∫ ∫

x

y

z

P

Q( , , 1)F yz xz= − −

(cos ,sin , )r u u u=
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(In this example, a Cartesian coordinate system is used)



WHICH STATEMENT IS WRONG?

1- The line integral                         is a vector  

2- The line integral is a scalar 

3- The sign of the line integral depends 

on the integration path

4- The gradient of a vector field can be written as: 

F dr⋅∫

F dr⋅∫

grad A
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PRACTICAL EXAMPLE: THE BIOT-SAVART LAW
The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

( )0
3

' '
(r)

4 '
µ

π
× −

=
−∫

L

dr r rIB
r r I

'dr

Where        is an infinitesimal length along the wire,

is the position vector of the point P and

is a vector from the origin to

Therefore,            is a vector from         to P

'dr

x

z

y

P

'r
'r r−

'dr'r

r

'r r− 'dr
r
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( )0 0 0 0
0 02 2 2 2 2

0 0 00 0 0

sin 2 ˆ(r) , ,0
cos 4 2

y I Ib bB y x e
x b b

ϕ

ρ ϕ µ µ
ρ ϕ π πρρ ρ ρ

= 
⇒ = − == + +

PRACTICAL EXAMPLE: THE BIOT-SAVART LAW
The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

Calculate the magnetic field in             produced 
by a straight wire with current I and length 2b

( )0
3

' '
(r)

4 '
µ

π
× −

=
−∫

L

dr r rIB
r r

x

z

y

-b

b

(x0,y0,0)

'dr

r

'r r−

(x0,y0,0)

SOLUTION:
(using a Cartesian coordinate system)

( )
0
0 '( ) 0,0,

=
 = ⇒ =
 =

x
y r u u
z u

:with u b b− → +

( )' ˆ0,0,1= = z
dr du du du e
du

( ) 2 2 2 2 2
0 0 0 0 0' , , 'r r x y u r r x y u uρ− = − ⇒ − = + + = +

( ) ( ) ( )0 0 0 0ˆ' ' , , , ,0× − = × − = −zdr r r du e x y u y x du

( )
( )

( )
( )

( ) ( )0 00 0 0 0
0 0 0 0 0 03/2 3/2 2 2 2 2 2 22 2 2 2

0 0 0 00 0

, ,0 2(r) , ,0 , ,0 , ,0
4 4 4 4

b
b b

b b
b

y x duI I I Idu u bB y x y x y x
u bu u

µ µ µ µ
π π π πρ ρ ρ ρρ ρ− −

−

 −
 = = − = − = −
 + ++ +  

∫ ∫

0
2 2

0 0

(r)
2

I bB
b

µ
πρ ρ

=
+

2 2 2
0 0 0x yρ = + (ρ0 is the distance of P from the z-axis)

EXERCISE: Repeat the same calculation using a cylindrical coordinate system

'r

ϕ
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We are making cranberry juice. 
After cranberries are squeezed,
It is better to filter the juice!
How much juice flows trough the cloth each second?

TARGET PROBLEM
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We are making cranberry juice. 
After cranberries are squeezed,
It is better to filter the juice!
How much juice flows trough the cloth each second?

PROBLEM:
Assume that the velocity of the juice is:
and that the surface of the cloth is given by the
expressions:

Calculate the flux of the juice through the surface S.

STEPS to do:
(1) to understand how to calculate the flux

of a VECTOR FIELD

(2) a method to integrate the flux over the whole 
surface.

TARGET PROBLEM

),,( zyxv

21

2( ,0, )v xy z= −

2 2

2 2: 1
ˆ ˆ 0

 = +


+ ≤
 ⋅ ≤ z

z x y
S x y

n e



THE FLUX
In the juice example, the flux F is the volume of the 
fluid ∆V that flows through the surface in the time ∆t. t

VF
∆
∆

=

STEP 1: - the fluid velocity is perpendicular 
to the surface

- the surface is not curved

∆S

v
tvx ∆=

Sv
t
VF

StvSxV

∆=
∆
∆

=

∆∆=∆=∆

STEP 2: - the fluid velocity is NOT 
perpendicular to the surface

- the surface is not curved

∆S

v
ˆF v S v n S v S⊥= ∆ = ⋅ ∆ = ⋅∆

n̂
STEP 3: - the surface is curved

∆Si
S

∫∑∑ ⋅≡∆⋅==
→∆ S

i
iiSi

i SdvSvFF
i 0

lim v

∫ ⋅
S

Sdv is the flux integral of    on the surface Sv
n̂

The orientation of the
normal depends on the
definition of ”positive”
and ”negative” side of S
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Which is the orientation of the normal to this surface?

24
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Which is the orientation of the normal to this surface?



However, when the surface is closed, the usual definition is
that the perpendicular to the surface points outwards

n̂
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and the FLUX INTEGRAL

• Assume that the surface S is parameterized by 

x

y

z

r

),( vurr =

S

1r∆
2r∆

Let’s consider two displacements,
- due a change in u:
- due a change in v:

rrrvuurr −=∆⇒∆+= 111 ),(
rrrvvurr −=∆⇒∆+= 222 ),(

1r∆

2r∆
∆S

αsin2r∆

α

The area ∆S is 

21

2112

ˆ

sin

rrSnS

rrrrS

∆×∆=∆=∆⇒

∆×∆=∆∆=∆ α

is perpendicular to S. But also is perpendicular to Sn̂ 21 rr ∆×∆
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dudv
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dv
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vurrd
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vurvuur

vurvuurrrd

rrSSd
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v
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∂
∂

×
∂
∂
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


















∂
∂

=

∂
∂

=∆
∆

−∆+
=

=−∆+=∆=

∆×∆=∆=

→∆

→∆→∆

→∆
→∆

→∆
→∆

),(
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),(),(limlim

limlim

2

0

0101

21
0
0

0
0

( )∫ ∫ ∫ 







∂
∂

×
∂
∂

⋅=⋅
S u v

dudv
v
r

u
rvurvSdv ),(

So, the flux integral of the vector
field v on the surface 
can be calculated as:

in the same way:

S
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and the FLUX INTEGRAL



TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
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TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
Assume that the velocity is described by the vector field
and that the cloth is describe by the surface S: z=x2+y2

x2+y2≤1
This defines the 
direction of the normal 
to the surface. It means 
that the normal has 
negative  z-component.

2( ,0, )v xy z= −

ˆ ˆ 0zn e⋅ <
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SOLUTION: 1- figure
2- Parameterization of 
3- Calculate the flux

x2+y2 ≤1

x

y

z

z=x2+y2

x2+y2 ≤1

S
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x

y

zz=x2+y2

x

y

z

R=1

TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
Assume that the velocity is described by the vector field
and that the cloth is describe by the surface S: z=x2+y2

x2+y2≤1
ˆ ˆ 0zn e⋅ <

2( ,0, )v xy z= −



SOLUTION: 1- figure
2- Parameterization of 
3- Calculate the flux

x2+y2 ≤1

x

y

z

z=x2+y2

x2+y2 ≤1

S
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n̂
x

y

zz=x2+y2

x

y

z

R=1

TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
Assume that the velocity is described by the vector field
and that the cloth is describe by the surface S: z=x2+y2

x2+y2≤1
ˆ ˆ 0zn e⋅ <

2( ,0, )v xy z= −



SOLUTION: 1- figure
2- Parameterization of 
3- Calculate the flux

x2+y2 ≤1

x

y

z

z=x2+y2

x2+y2 ≤1

S
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n̂
x

y

zz=x2+y2

x

y

z

R=1

TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
Assume that the velocity is described by the vector field
and that the cloth is describe by the surface S: z=x2+y2

x2+y2≤1
ˆ ˆ 0zn e⋅ <

2( ,0, )v xy z= −



SOLUTION: 1- figure
2- Parameterization of 
3- Calculate the flux

x2+y2 ≤1

x

y

z

z=x2+y2

x2+y2 ≤1

S
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n̂
x

y

zz=x2+y2

x

y

z

R=1

R=1

TARGET PROBLEM
(using a cartesian coordinate system)

Calculate the flux of the juice.
Assume that the velocity is described by the vector field
and that the cloth is describe by the surface S: z=x2+y2

x2+y2≤1
ˆ ˆ 0zn e⋅ <

2( ,0, )v xy z= −



Parameterization of z=x2+y2

x2+y2 ≤1

2 2 2 2 2

cos
sin

( sin ) ( sin )

x
y
z x y

ρ ϕ
ρ ϕ

ρ ϕ ρ ϕ ρ

=
=

= + = + =

0≤ρ ≤1
0≤ϕ≤2π

ρ

ϕ

1

2π

Parameterization of the vector field: 

( , )r ρ ϕ

=(ρ 2 sinϕ cosϕ, 0, -ρ 4)2( ,0, )A xy z=

( , )r ρ ϕ

S
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n̂

R=1

TARGET PROBLEM
(using a cartesian coordinate system)



( ( , ))
S S

r rF v dS v r d dρ ϕ ρ ϕ
ρ ϕ

 ∂ ∂
= ⋅ = ⋅ × ∂ ∂ 

∫∫ ∫∫

( )

( )

cos ,sin , 2

sin , cos ,0

r

r

ϕ ϕ ρ
ρ

ρ ϕ ρ ϕ
ϕ

∂
=

∂
∂

= −
∂ 2 2 2 2

2 2

ˆ ˆ ˆ
cos sin 2

sin cos 0

( 2 cos , 2 sin , cos sin )
( 2 cos , 2 sin , )

x y ze e e
r r ϕ ϕ ρ
ρ ϕ

ρ ϕ ρ ϕ

ρ ϕ ρ ϕ ρ ϕ ρ ϕ

ρ ϕ ρ ϕ ρ

 ∂ ∂
⇒ × = = ∂ ∂  −

− − + =

− −

Note that has a z-component that is always positive, 
while according to the definition of the problem, it is supposed to be negative.
How to take care of this? 
We have two options:
 We can solve the integral as usual, but then we must change the sign to the 

final answer
 There is no rule in the order of the parameters, so we could have calculated 

the term above as:

r r
ρ ϕ

 ∂ ∂
× ∂ ∂ 
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TARGET PROBLEM
(using a cartesian coordinate system)

The flux can be calculated as:

r r
ρ ϕ

 ∂ ∂
× ∂ ∂ 

The term                     can be calculated in this way:

2 2(2 cos , 2 sin , )r r ρ ϕ ρ ϕ ρ
ϕ ρ

 ∂ ∂
× = − ∂ ∂ 



( )
( )

2 1 2 4 2 2

0 0
2 1 4 2 5

0 0
1

2 25 2 6 2

0 0
0

3

( ( , ))

sin  cos ,0,- ( 2 cos , 2 sin , )

2 sin  cos 0-

2 1 2 1sin  cos sin  cos
5 6 5 6

2 cos
5 3

S S

r rv dS v r d d

d d

d d

d d

π

π

π π

ρ ϕ ρ ϕ
ρ ϕ

ρ ϕ ϕ ρ ρ ϕ ρ ϕ ρ ρ ϕ

ρ ϕ ϕ ρ ρ ϕ

ρ ϕ ϕ ρ ϕ ϕ ϕ ϕ

ϕ

− −

 ∂ ∂
⋅ = ⋅ × = ∂ ∂ 

⋅ − − =

− + =

   − − = − − =     


− −

∫∫ ∫∫

∫ ∫
∫ ∫

∫ ∫
2

0

1
6 3

π
πϕ

 
− = −  

  

But we must change sign!   The answer is  
3
π

+
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TARGET PROBLEM
(using a cartesian coordinate system)



WHICH STATEMENT IS WRONG?

1- The flux integral is a scalar 

2- Flux integrals can be calculated also on a closed surface. 

3- The normal to the integration surface
always points “downwards” (in the negative direction of the z-axis) 

4- The flux through a membrane can be 
calculated with flux integrals. 
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FLUX OF THE ELECTRIC FIELD PRODUCED 
BY A POINT CHARGE

The electric field produced by a point charge 
located in the origin is:

( )3/22 2 2
0

ˆ ˆ ˆ
4

x y zxe ye zeQE
x y zπε

+ +
=

+ +

2
0

1 ˆ
4 r

QE e
rπε

=

using a Cartesian coordinate system

using a spherical coordinate system

Calculate the flux of the electric field on 
a sphere S centred in the origin and 
with radius R using:
(a) a Cartesian coordinate system
(b) a spherical coordinate system

Q

R

S
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(a) Using a Cartesian coordinate system

( )3/22 2 2
0

ˆ ˆ ˆ
4

x y zxe ye zeQE
x y zπε

+ +
=

+ +

( )( , )
S

r rE dS E r d d
θ ϕ

θ ϕ θ ϕ
θ ϕ

 ∂ ∂
⋅ = ⋅ × ∂ ∂ 

∫ ∫ ∫

( )( , )
S u v

r rE dS E r u v dudv
u v

∂ ∂ ⋅ = ⋅ × ∂ ∂ ∫ ∫ ∫
Q

R

S

Which parameterization to use?
The surface is a sphere, so a smart choice is to use spherical coordinates:

sin cos
sin sin
cos

x R
y R
z R

θ ϕ
θ ϕ
θ

=
 =
 =

0
0 2

θ π
ϕ π

≤ ≤
≤ ≤

with:

IMPORTANT:
(1) to use spherical coordinates r, θ, ϕ does not imply that a spherical coordinate system is used! 

The coordinate system is still Cartesian as long as the componenents of a vector are the projections
along the x-axis y-axis and z-axes.

(2) The flux is calculated on the surface of the sphere with radius R (which is constant). 
So no integration in r is necessary. The integration is only in θ, ϕ .

(3) Each point on the sphere has distance R from the origin. So, on the surface of S: 2 2 2 2x y z R+ + =

ˆ ˆ ˆ( , ) ( sin cos , sin sin , cos ) sin cos sin sin cosx y zr R R R R e R e R eθ ϕ θ ϕ θ ϕ θ θ ϕ θ ϕ θ= = + +

Parameterization of the sphere:
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( )( , )
S

r rE dS E r d d
θ ϕ

θ ϕ θ ϕ
θ ϕ

 ∂ ∂
⋅ = ⋅ × ∂ ∂ 

∫ ∫ ∫
ˆ ˆ ˆ( , ) ( sin cos , sin sin , cos ) sin cos sin sin cosx y zr R R R R e R e R eθ ϕ θ ϕ θ ϕ θ θ ϕ θ ϕ θ= = + +

ˆ ˆ ˆcos cos cos sin sin

ˆ ˆsin sin sin cos

x y z

x y

r R e R e R e

r R e R e

θ ϕ θ ϕ θ
θ

θ ϕ θ ϕ
ϕ

∂
= + −

∂
∂

= − +
∂

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆsin R sin cos sin sin cos sinx y z x y z
r r R e R e R e R xe ye zeθ θ ϕ θ ϕ θ θ
θ ϕ

 ∂ ∂
× = + + = + + ∂ ∂ 

( )
( )

( )

( ) ( )

3/22 2 2
0

2 2 2

3/2 1/22 2 2 2 2 2
0 0 0

ˆ ˆ ˆ
ˆ ˆ ˆ( , ) sin

4

1sin sin sin
4 4 4

x y z
x y z

xe ye zer r QE r R xe ye ze
x y z

Q x y z Q QR R
x y z x y z

θ ϕ θ
θ ϕ πε

θ θ θ
πε πε πε

+ + ∂ ∂
⋅ × = ⋅ + + = ∂ ∂  + +

+ +
= = =

+ + + +

2 2 2 2x y z R+ + =Remember that

2

0 0
0 0 0

sin sin
4 4S

Q Q QE dS d d d d
θ π ϕ π

θ ϕ θ ϕ
θ θ ϕ θ θ ϕ

πε πε ε
= =

= =
⋅ = = =∫ ∫ ∫ ∫ ∫
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(b) Using a spherical coordinate system

We need to calculate:

In spherical coordinate system, it is much easier.
First we need to express         in a spherical coordinate system:

we need to calculate the absolute value and the direction of

- absolute value:                              (see the slides on “vector algebra”, week 1)

- direction: it must be perpendicular to the surface of the sphere.
The radial direction is perpendicular to S. 

2
0

1 ˆ
4 r

QE e
rπε

=

S
E dS⋅∫ Q

R

S

dS
dS

2 sindS r d dθ ϕ θ=

2 ˆsin rdS r d d eθ ϕ θ=

2
2

0 0

2

0 0
0 0

1 ˆ ˆ( sin ) (sin )
4 4

sin
4

r rS S S

Q QE dS e r d d e d d
r

Q Qd d
θ π ϕ π

θ ϕ

θ ϕ θ θ ϕ θ
πε πε

θ θ ϕ
πε ε

= =

= =

⋅ = ⋅ = =

= =

∫ ∫ ∫

∫ ∫

ˆ ˆ 1r re e⋅ =Remember that
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