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Today:
 Scalar fields and vector fields

 Level surfaces and level curves

 The position vector

 The gradient 

 The directional derivative

 Three theorems related to the gradient

 Scalar potential  home assignment (+övning week 2)



Connections with next topics and 
next weeks

Scalar and vector fields: 
 They will be used throughout the course
 They are essential for line integrals, flux, Gauss’ theorem, Stokes’ theorem…

Gradient:
 A wide range of applications in physics and engineering
 It has links with most of the course. For example

o week 3 (Gauss’ theorem), 
o week 4 (curvilenar coordinates)
o week 5 (nabla)
o week 6 (Laplace and Poisson’s equations)



A mosquito is flying in the room.
How does the mosquito find us in the dark?
A theory is: the mosquito flies toward the warmest region of the room
 The mosquito must know:

(A) How the temperature T(x,y,z) changes along the flying direction
(B) In which direction it must fly to be in a warmer place as quick as possible

TARGET PROBLEM

To solve the problem, we need to:
(1) introduce a SCALAR FIELD,  T(x,y,z)
(2) measure the rate of change of the scalar field T(x,y,z) in R3

(3) find the direction along which the rate of change of T(x,y,z) is maximum
2

The temperature is described by the scalar field:   T(x,y,z)=x2+2yz-z   [°C]
The mosquito is in the point P: (1,1,2)
 Question A: in which direction the mosquito must fly to be in a warmer place 

as quick as possible?
 Question B: How much does the temperature change in time if the mosquito 

flies with velocity 3m/s in direction                        ?

Problem

ˆ ˆ ˆ2 2− + +x y ze e e



SCALAR FIELD AND VECTOR FIELD
A scalar quantity is said to be a field if it is a function of position
A scalar field associates a real number φ(x,y,z) to each point (x,y,z) of the space.

Examples:  - temperature distribution in the space
- pressure distribution in a fluid
- electrostatic potential around 

an electric charge

Examples:  - velocity distribution in a fluid
- magnetic field around a magnet
- electrostatic field around an electric charge

To solve our target problem, today we will focus on scalar fields
3

A vector quantity is said to be a field if it is a function of position
A vector field associates a vector (x,y,z) to each point (x,y,z) of the space.A





LEVEL CURVES and LEVEL SURFACES
• Level curves and level surfaces are useful to visualize a scalar field 

(in R2 and R3 respectively).

• What is a level surface?
A surface on which the scalar field φ(x,y,z) is constant:

φ(x,y,z)=c (1)

• To create an “image” of the scalar field φ(x,y,z) we can consider a
family of level surfaces:

φ(x,y,z)=c+nh where h is a constant and n=0, ±1, ±2, ±3,…

Example: φ(x,y,z)=1    φ(x,y,z)=3 φ(x,y,z)=5 φ (x,y,z)=7  ….

To improve the details of the “image”, you can decrease the steps between 
one surface and the next.

(2)
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• What is a level curve?
A curve on which the scalar field φ(x,y) is constant:

φ(x,y)=c



EXAMPLE

Plot the level curves of the scalar field:
2
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POSITION VECTOR

• The vector from the origin to the point P=(x,y,z)
is called position vector

x

y

z

P
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• Note that depends on the choice 
of the coordinate system

r

r



POSITION VECTOR
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POSITION VECTOR

• The vector from the origin to the point P=(x,y,z)
is called position vector x

y

z

P

7

r

• Note that depends on the choice 
of the coordinate system

r

• The differential of a position vector can be written as a vector 
whose components are the differential of each position vector component:

(4)

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

r xe ye ze

dr dxe dye dze

= + +

= + +

r

2 2 2r r x y z= = + +

• The absolute value of a position vector is the scalar:

(3)

• can be expressed with different notations:r

ˆ ˆ ˆ( , , ) ( , , ) x y zr r x y z r x y z r xe ye ze= = = + + (in a Cartesian
coordinate system)



THE ELECTRIC FIELD GENERATED BY A POINT CHARGE
(a useful application of the position vector)
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Consider a point charge q located in the origin and a point P 
defined by the position vector
• The absolute value of the of the electric field in P is:

r
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0 0
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q qE
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q r q rE
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= =

r
• In this case, the direction of the electric field is from the 

origin to P,    so it is given by:

E

q



THE ELECTRIC FIELD GENERATED BY A POINT CHARGE
(a useful application of the position vector)
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Consider a point charge q located in the origin and a point P 
defined by the position vector
• The absolute value of the of the electric field in P is:
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• In this case, the direction of the electric field is from the 

origin to P,    so it is given by:

We need to identify the distance and the direction from q to P
direction: 
distance:

'r r−
'r r−

2 3
0 0

1 ' '
4 ' 4' '

q r r q r rE
r rr r r rπε πε

− −
= =

−− −

E

q

E

'r r−

• How can we express the electric field if the charge is 
not in the origin? 

'r
r

 is used to identify the position of the “source”
 is used to identify the position of P (where you need to 

calculate the field)



THE GRADIENT
• Assume that is a continuous and derivable scalar field

• DEFINITION:

IMPORTANT: the gradient of a scalar field is a vector field

ˆ ˆ ˆ, , x y zgrad e e e
x y z x y z
φ φ φ φ φ φφ

 ∂ ∂ ∂ ∂ ∂ ∂
= = + + ∂ ∂ ∂ ∂ ∂ ∂ 

(5)

d grad e
ds
φ φ= ⋅  (8)

The rate of variation of φ in a given direction corresponds to 
the component of the vector gradient in that direction

Answer to 
question (A) 

Directional derivative

• Scalar field differential:

d grad drφ φ= ⋅ (6)

EXERCISE:    calculate  the gradient of the vector field:                      and plot gradφ in the point P: (2,0) and in the point Q: (0,-1) 
2

2

4
x yφ = +

9

• Let’s introduce :
- the amplitude of the position vector differential, ds, and 
- the direction ê    (ê is a unit vector, i.e. |ê|=1)

Equations (6) and (7) give:

ˆ (7)dr e ds=

( )rφ

in a Cartesian 
coordinate system



THE GRADIENT
THEOREM  1

The direction of the maximum growth (rate of change) of a scalar field φ in the 
point P is the direction of the gradient in the point P.
The maximum growth (rate of change) of φ per unit length is 

(4.1 in the textbook)

PROOF

P

( )Pgradφ

ê
α

( )Pgradφ

a- let’s calculate the derivative in the direction ê   Eq. (8)

ˆ cosd grad e grad
ds
φ φ φ α= ⋅ =

b- this is maximum when:
cos α =1    

which implies:

α=0   (ê // gradφ)     and    d grad
ds
φ φ=

Answer to 
question (B) 
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THE GRADIENT
THEOREM  2

If φ has a maximum or a minimum in the point P, then the gradient in P is zero.

PROOF

From Equation (8): ˆd grad e
ds
φ φ= ⋅

φ has a maximum or a minimum in P   ⇒ dφ/ds=0

using equation (8),   dφ/ds=0 implies gradφ=0

11



THE GRADIENT
THEOREM  3

The gradient of a scalar field φ(x,y,z) in the point P
is orthogonal to the level surface φ=c in P.

(4.2 in the textbook)

PROOF

gradφ

a- Let’s do a small movement 
along the level surface

b- Remember that on the level surface 
φ is constant:

dφ=0

c- Then, using equation (6):

d- This implies that gradφ is perpendicular 
to 

e- gradφ is perpendicular to each on the 
level surface gradφ is perpendicular 
to the level surface

0d grad drφ φ= ⋅ =

12
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Plot the level curves of the scalar field:
2
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x yφ = +
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xgrad y

grad

grad

φ

φ

φ

 =  
 

=

= −

• Theorems 1, 2 and 3 are valid also in two dimensions. 
• gradφ is a vector field that:

- in each point is orthogonal to the level curve in that point and 
- always points along the direction in which the height grows faster

2D-EXAMPLE

and calculate the gradient in the points P1=(2,0) and P2=(0,-1)
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• Consider an electrostatic potential

• The electric field produced by              is:

(see the TET course for details)

• The force produced by             on an electric charge q is: 

ELECTROSTATIC POTENTIAL AND ELECTRIC FIELD

14

( )V r

( )V r ( ) ( )E r grad V r= −

( )E r ( ) ( )F r qE qgrad V r= = −

EXERCISE:
• Consider a proton in an electrostatic potential:

10

20
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40
50 In which direction will the proton 

move?proton



• Consider an electrostatic potential

• The electric field produced by              is:

(see the TET course for details)

• The force produced by             on an electric charge q is: 

ELECTROSTATIC POTENTIAL AND ELECTRIC FIELD
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( )V r

( )V r ( ) ( )E r grad V r= −

( )E r ( ) ( )F r qE qgrad V r= = −

EXERCISE:
• Consider a proton in an electrostatic potential:
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proton

In which direction will the proton 
move?

Poll 6



TARGET PROBLEM
A mosquito is flying around in the room.

The temperature is described by the
scalar field:

T(x,y,z)=x2+2yz-z   [°C]

The mosquito is in the point P=(1,1,2)

(a) In which direction the mosquito will fly to be in a warmer place
as quick as possible?

(b) How much the temperature changes in time if the mosquito flies 
with velocity 3m/s in direction (-2,2,1)?

at z=2
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TARGET PROBLEM

(a) In which direction the mosquito will fly to be warm as quick as possible?

We use theorem 1:   The gradient in the point P is a vector that points to the direction in which the
scalar field in P has the highest growth.

, ,T T TgradT
x y z

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

From definition (5):

2 , 2 , 2 1T T Tx z y
x y z

∂ ∂ ∂
= = = −

∂ ∂ ∂

2( , , ) 2T x y z x yz z= + −

(2 , 2 , 2 1)gradT x z y= −

The mosquito is in P:(1,1,2) (1,1,2)( ) (2 1,2 2,2 1 1) (2,4,1)PgradT = = ⋅ ⋅ ⋅ − =

The mosquito will fly in direction (2,4,1)

at z=2
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TARGET PROBLEM

(b) How fast the temperature changes in time if the mosquito flies 
with velocity 3m/s in direction (-2,2,1)?

We must calculate                   where t is the time dT
dt

ˆdT dr dsgradT gradT e
dt dt dt

= ⋅ = ⋅

Using equation (6):

3 /ds v m s
dt

= =

2 2 2

( 2, 2,1) ( 2, 2,1) ( 2, 2,1)
( 2, 2,1) 3( 2) 2 1

ve
v

− − −
= = = =

− − + +


where
( 2, 2,1) 3 ( 2,2,1)

3
dr
dt

−
= ⋅ = −

(2, 4,1) ( 2,2,1) 5dT drgradT
dt dt

= ⋅ = ⋅ − = [C/s]
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WHICH STATEMENT IS WRONG?

1- A scalar field associates a real number to a point in space 

2- The increase of a scalar field in a given direction can be calculated

with the directional derivative:

3- If φ is a scalar field, then 

in a spherical coordinate system

4- A vector field can be written as 

, ,grad
x y z
φ φ φφ

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

18

( , , )A A x y z=

d grad e
ds
φ φ= ⋅ 

Poll 1
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