VEKTORANALYS

HT 2021
 CELTE/CENMI ED1110

GRADIENTEN

Kursvecka 1
Kapitel 4-5 (Vektoranalys, 1:e uppl, Frassinetti/Scheffel)

Today:

- Scalar fields and vector fields
- Level surfaces and level curves
- The position vector
- The gradient
- The directional derivative
- Three theorems related to the gradient
- Scalar potential \rightarrow home assignment (+övning week 2)

Connections with next topics and next weeks

Scalar and vector fields:

- They will be used throughout the course
- They are essential for line integrals, flux, Gauss' theorem, Stokes' theorem...

Gradient:

- A wide range of applications in physics and engineering
- It has links with most of the course. For example
- week 3 (Gauss' theorem),
- week 4 (curvilenar coordinates)
- week 5 (nabla)
- week 6 (Laplace and Poisson's equations)

TARGET PROBLEM

A mosquito is flying in the room.
How does the mosquito find us in the dark?

A theory is: the mosquito flies toward the warmest region of the room
\rightarrow The mosquito must know:
(A) How the temperature $T(x, y, z)$ changes along the flying direction
(B) In which direction it must fly to be in a warmer place as quick as possible

Problem

The temperature is described by the scalar field: $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+2 \mathrm{yz}-\mathrm{z} \quad\left[{ }^{\circ} \mathrm{C}\right]$
The mosquito is in the point $\mathrm{P}:(1,1,2)$

- Question A: in which direction the mosquito must fly to be in a warmer place as quick as possible?
- Question B: How much does the temperature change in time if the mosquito flies with velocity $3 \mathrm{~m} / \mathrm{s}$ in direction $-2 \hat{e}_{x}+2 \hat{e}_{y}+\hat{e}_{z}$?

To solve the problem, we need to:
(1) introduce a SCALAR FIELD, $T(x, y, z)$
(2) measure the rate of change of the scalar field $T(x, y, z)$ in R^{3}
(3) find the direction along which the rate of change of $T(x, y, z)$ is maximum

SCALAR FIELD AND VECTOR FIELD

A scalar quantity is said to be a field if it is a function of position A scalar field associates a real number $\phi(x, y, z)$ to each point (x, y, z) of the space.

Examples: - temperature distribution in the space - pressure distribution in a fluid

- electrostatic potential around an electric charge

A vector quantity is said to be a field if it is a function of position A vector field associates a vector $\bar{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ to each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of the space.

Examples: - velocity distribution in a fluid

- magnetic field around a magnet
- electrostatic field around an electric charge

LEVEL CURVES and LEVEL SURFACES

- Level curves and level surfaces are useful to visualize a scalar field (in R^{2} and R^{3} respectively).
- What is a level curve?

A curve on which the scalar field $\phi(x, y)$ is constant:

$$
\phi(x, y)=c
$$

- What is a level surface?

A surface on which the scalar field $\phi(x, y, z)$ is constant:

$$
\begin{equation*}
\phi(x, y, z)=c \tag{1}
\end{equation*}
$$

- To create an "image" of the scalar field $\phi(x, y, z)$ we can consider a family of level surfaces:

$$
\begin{align*}
& \phi(x, y, z)=c+n h \quad \text { where } h \text { is a constant and } n=0, \pm 1, \pm 2, \pm 3, \ldots \\
& \text { Example: } \phi(x, y, z)=1 \quad \phi(x, y, z)=3 \quad \phi(x, y, z)=5 \quad \phi(x, y, z)=7 \ldots \tag{2}
\end{align*}
$$

To improve the details of the "image", you can decrease the steps between one surface and the next.

EXAMPLE

Plot the level curves of the scalar field: $\phi=\frac{x^{2}}{4}+y^{2}$

POSITION VECTOR

- The vector from the origin to the point $P=(x, y, z)$ is called position vector \bar{r}
- Note that \bar{r} depends on the choice of the coordinate system

POSITION VECTOR

- The vector from the origin to the point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is called position vector \bar{r}

- Note that \bar{r} depends on the choice of the coordinate system

POSITION VECTOR

- The vector from the origin to the point $P=(x, y, z)$ is called position vector \bar{r}

- Note that \bar{r} depends on the choice of the coordinate system
- \bar{r} can be expressed with different notations:

$$
\bar{r}=\bar{r}(x, y, z) \quad \bar{r}=(x, y, z) \quad \bar{r}=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}
$$

- The absolute value of a position vector is the scalar:

$$
\begin{equation*}
r=|\bar{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \tag{3}
\end{equation*}
$$

- The differential of a position vector can be written as a vector whose components are the differential of each position vector component:

$$
\begin{gather*}
\bar{r}=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z} \\
\downarrow \\
d \bar{r}=d x \hat{e}_{x}+d y \hat{e}_{y}+d z \hat{e}_{z} \tag{4}
\end{gather*}
$$

THE ELECTRIC FIELD GENERATED BY A POINT CHARGE (a useful application of the position vector)

Consider a point charge q located in the origin and a point P defined by the position vector \bar{r}

- The absolute value of the of the electric field in P is:

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\bar{r}|^{2}}
$$

- In this case, the direction of the electric field is from the origin to P, so it is given by: \bar{r}

$$
\bar{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\bar{r}|^{2}} \frac{\bar{r}}{|\bar{r}|}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\bar{r}}{|\bar{r}|^{3}}
$$

THE ELECTRIC FIELD GENERATED BY A POINT CHARGE (a useful application of the position vector)

Consider a point charge q located in the origin and a point P defined by the position vector \bar{r}

- The absolute value of the of the electric field in P is:

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\bar{r}|^{2}}
$$

- In this case, the direction of the electric field is from the origin to P, so it is given by: \bar{r}

$$
\bar{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\bar{r}|^{2}} \frac{\bar{r}}{|\bar{r}|}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\bar{r}}{|\bar{r}|^{3}}
$$

- How can we express the electric field if the charge is not in the origin?
- \bar{r}^{\prime} is used to identify the position of the "source"
- \bar{r} is used to identify the position of P (where you need to calculate the field)
We need to identify the distance and the direction from q to P direction: $\bar{r}-\bar{r}$ '
distance: $|\bar{r}-\bar{r}|$

$$
\bar{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left|\bar{r}-\bar{r}^{\prime}\right|^{2}} \frac{\bar{r}-\bar{r}^{\prime}}{\left|\bar{r}-\bar{r}^{\prime}\right|}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\bar{r}-\bar{r}^{\prime}}{\left|\bar{r}-\bar{r}^{\prime}\right|^{3}}
$$

THE GRADIENT

- Assume that $\phi(\bar{r})$ is a continuous and derivable scalar field
- DEFINITION:
in a Cartesian
coordinate system

$$
\begin{equation*}
\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=\frac{\partial \phi}{\partial x} \hat{e}_{x}+\frac{\partial \phi}{\partial y} \hat{e}_{y}+\frac{\partial \phi}{\partial z} \hat{e}_{z} \tag{5}
\end{equation*}
$$

IMPORTANT: the gradient of a scalar field is a vector field
EXERCISE: calculate the gradient of the vector field: $\quad \phi=\frac{x^{2}}{4}+y^{2}$ and plot $\operatorname{grad} \phi$ in the point $P:(2,0)$ and in the point $Q:(0,-1)$

- Scalar field differential:

$$
\begin{equation*}
d \phi=\operatorname{grad} \phi \cdot d \bar{r} \tag{6}
\end{equation*}
$$

- Let's introduce :
- the amplitude of the position vector differential, $d \mathrm{~s}$, and

$$
\begin{equation*}
d \bar{r}=\hat{e} d s \tag{7}
\end{equation*}
$$

- the direction ê (ê is a unit vector, i.e. |ê=1)

Equations (6) and (7) give:

$$
\begin{equation*}
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e} \tag{8}
\end{equation*}
$$

The rate of variation of ϕ in a given direction corresponds to

THE GRADIENT

THEOREM 1 (4. in in the textbook)

The direction of the maximum growth (rate of change) of a scalar field ϕ in the point P is the direction of the gradient in the point P.
The maximum growth (rate of change) of ϕ per unit length is $\left|(\operatorname{grad} \phi)_{P}\right|$

PROOF

a- let's calculate the derivative in the direction ê Eq. (8)

$$
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e}=|\operatorname{grad} \phi| \cos \alpha
$$

b - this is maximum when:

$$
\cos \alpha=1
$$

which implies:

$$
\alpha=0 \quad(\hat{\mathrm{e}} / / \operatorname{grad} \phi) \quad \text { and } \quad \frac{d \phi}{d s}=|\operatorname{grad} \phi|
$$

THE GRADIENT

THEOREM 2

If ϕ has a maximum or a minimum in the point P , then the gradient in P is zero.

PROOF

From Equation (8): $\quad \frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e}$
ϕ has a maximum or a minimum in $\mathrm{P} \Rightarrow d \phi / d s=0$
using equation (8), $d \phi / d s=0$ implies $\operatorname{grad} \phi=0$

THE GRADIENT

THEOREM 3 (4.2in ine textbook $)$

The gradient of a scalar field $\phi(x, y, z)$ in the point P is orthogonal to the level surface $\phi=c$ in P .

PROOF

a- Let's do a small movement $d \bar{r}$ along the level surface
b- Remember that on the level surface ϕ is constant:

$$
d \phi=0
$$

c- Then, using equation (6):

$$
d \phi=\operatorname{grad} \phi \cdot d \bar{r}=0
$$

d- This implies that $\operatorname{grad} \phi$ is perpendicular to $d \bar{r}$
e- $\operatorname{grad} \phi$ is perpendicular to each $d \bar{r}$ on the level surface $\operatorname{grad} \phi$ is perpendicular to the level surface

2D-EXAMPLE

- Theorems 1,2 and 3 are valid also in two dimensions.
- $\operatorname{grad} \phi$ is a vector field that:
- in each point is orthogonal to the level curve in that point and
- always points along the direction in which the height grows faster

Plot the level curves of the scalar field: $\phi=\frac{x^{2}}{4}+y^{2}$
and calculate the gradient in the points $P_{1}=(2,0)$ and $P_{2}=(0,-1)$

$$
\begin{aligned}
& \operatorname{grad} \phi=\left(\frac{x}{2}, 2 y\right) \\
& \left.\operatorname{grad} \phi\right|_{P 1}=(1,0) \\
& \left.\operatorname{grad} \phi\right|_{P 2}=(0,-2)
\end{aligned}
$$

ELECTROSTATIC POTENTIAL AND ELECTRIC FIELD

- Consider an electrostatic potential $V(\bar{r})$
- The electric field produced by $V(\bar{r})$ is: $\bar{E}(\bar{r})=-\operatorname{grad} V(\bar{r})$
(see the TET course for details)
- The force produced by $\bar{E}(\bar{r})$ on an electric charge q is: $\bar{F}(\bar{r})=q \bar{E}=-q \operatorname{grad} V(\bar{r})$

EXERCISE:

- Consider a proton in an electrostatic potential:

In which direction will the proton move?

ELECTROSTATIC POTENTIAL AND ELECTRIC FIELD

- Consider an electrostatic potential $V(\bar{r})$
- The electric field produced by $V(\bar{r})$ is: $\bar{E}(\bar{r})=-\operatorname{grad} V(\bar{r})$
(see the TET course for details)
- The force produced by $\bar{E}(\bar{r})$ on an electric charge q is: $\bar{F}(\bar{r})=q \bar{E}=-q \operatorname{grad} V(\bar{r})$

EXERCISE:

- Consider a proton in an electrostatic potential:

In which direction will the proton move?

TARGET PROBLEM

A mosquito is flying around in the room.
The temperature is described by the scalar field:

$$
T(x, y, z)=x^{2}+2 y z-z \quad\left[{ }^{\circ} C\right]
$$

The mosquito is in the point $\mathrm{P}=(1,1,2)$

(a) In which direction the mosquito will fly to be in a warmer place as quick as possible?
(b) How much the temperature changes in time if the mosquito flies with velocity $3 \mathrm{~m} / \mathrm{s}$ in direction $(-2,2,1)$?

TARGET PROBLEM

(a) In which direction the mosquito will fly to be warm as quick as possible?

We use theorem 1: The gradient in the point P is a vector that points to the direction in which the scalar field in P has the highest growth.
From definition (5):

$$
\begin{aligned}
& \operatorname{grad} T=\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) \\
& T(x, y, z)=x^{2}+2 y z-z \\
& \frac{\partial T}{\partial x}=2 x, \quad \frac{\partial T}{\partial y}=2 z, \quad \frac{\partial T}{\partial z}=2 y-1
\end{aligned}
$$

$$
\operatorname{grad} T=(2 x, 2 z, 2 y-1)
$$

The mosquito is in $\mathrm{P}:(1,1,2) \quad(\operatorname{grad} T)_{P=(1,1,2)}=(2 \cdot 1,2 \cdot 2,2 \cdot 1-1)=(2,4,1)$

The mosquito will fly in direction $(2,4,1)$

TARGET PROBLEM

(b) How fast the temperature changes in time if the mosquito flies with velocity $3 \mathrm{~m} / \mathrm{s}$ in direction ($-2,2,1$)?

We must calculate $\quad \frac{d T}{d t} \quad$ where t is the time
Using equation (6):
$\frac{d T}{d t} \stackrel{\downarrow}{=} \operatorname{gradT} \cdot \frac{d \bar{r}}{d t}=\operatorname{grad} T \cdot \hat{e} \frac{d s}{d t}$
where $\left\{\begin{array}{l}\frac{d s}{d t}=|\vec{v}|=3 m / s \\ \hat{e}=\frac{\bar{v}}{|\vec{v}|}=\frac{(-2,2,1)}{|(-2,2,1)|}=\frac{(-2,2,1)}{\sqrt{(-2)^{2}+2^{2}+1^{2}}}=\frac{(-2,2,1)}{3}\end{array}\right\} \Rightarrow \frac{d \bar{r}}{d t}=\frac{(-2,2,1)}{3} \cdot 3=(-2,2,1)$
$\frac{d T}{d t}=\operatorname{grad} T \cdot \frac{d \bar{r}}{d t}=(2,4,1) \cdot(-2,2,1)=5 \quad[\mathrm{C} / \mathrm{s}]$

WHICH STATEMENT IS WRONG?

1- A scalar field associates a real number to a point in space

2- The increase of a scalar field in a given direction can be calculated
 with the directional derivative: $\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e}$

3- If ϕ is a scalar field, then

$$
\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \text { in a spherical coordinate system }
$$

4- A vector field can be written as $\bar{A}=\bar{A}(x, y, z)$

