VEKTORANALYS / ED1110 HT 2021
 CELTE / CENMI

BASICS OF VECTOR ALGEBRA AND SOME APPLICATIONS

VECTORS

A vector is a quantity with magnitude and direction
Let's consider a vector in
Cartesian coordinates: $\bar{v}=(1,2,0)$
which arrow in the figure represents best the vector \bar{v} ?

- the red
- the blue
- the green
- all of them

Plot the vector $\bar{v}=(1,2,0)_{\text {(in a Cartesian coord. sis.) }}$ in the point P

Plot the position vector $\bar{r}=(2,1,0)$ (with the components in cartesian coordinates)

VECTORS

A vector is a quantity with magnitude and direction
Let's consider a vector in
Cartesian coordinates: $\bar{v}=(1,2,0)$
which arrow in the figure represents best the vector \bar{v} ?

- the red
- the blue
- the green
- all of them

Plot the vector $\bar{v}=(1,2,0)_{\text {(in a Cartesian coord. sis.) }}$ in the point P

Plot the position vector $\bar{r}=(2,1,0)$ (with the components in cartesian coordinates)

VECTORS: addition and subtraction

Let's consider two vectors in
Cartesian coordinates:

$$
\begin{aligned}
& \bar{v}=\left(v_{x}, v_{y}, v_{z}\right) \\
& \bar{w}=\left(w_{x}, w_{y}, w_{z}\right)
\end{aligned}
$$

Addition:

$$
\bar{c}=\bar{v}+\bar{w}=\left(v_{x}+w_{x}, v_{y}+w_{y}, v_{z}+w_{z}\right)
$$

Subtraction:

$$
\begin{aligned}
& \bar{d}=\bar{v}-\bar{w}=\left(v_{x}-w_{x}, v_{y}-w_{y}, v_{z}-w_{z}\right) \\
& \bar{d}=\bar{v}+(-\bar{w})
\end{aligned}
$$

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

VECTORS: addition and subtraction

BASIS VECTORS IN CARTESIAN COORDINATES

The basis vectors are vectors of length 1 and direction along the axes.

In a Cartesian coordinate system, the basis vectors are:

$$
\hat{e}_{x}=(1,0,0) \quad \hat{e}_{y}=(0,1,0) \quad \hat{e}_{z}=(0,0,1)
$$

Let's consider the vector $\bar{v}=(2,4,3)$ in
Cartesian coordinates:

$$
\begin{aligned}
\bar{v}= & (2,4,3)=(2,0,0)+(0,4,0)+(0,0,3)= \\
& 2(1,0,0)+(0,4,0)+3(0,0,1)=2 \hat{e}_{x}+4 \hat{e}_{y}+3 \hat{e}_{z}
\end{aligned}
$$

In general, any vector can be represented using the basis vectors of the coordinate system:

$$
\bar{w}=(\mathrm{a}, \mathrm{~b}, \mathrm{c})=a \hat{e}_{x}+b \hat{e}_{y}+c \hat{e}_{z}
$$

Exercise:

Use the scalar product and the basis vectors to express the y-component v_{y} of a vector \bar{v} :

$$
v_{y}=
$$

VECTORS: absolute value, scalar product, and cross product

Let's consider two vectors in Cartesian coordinates:

$$
\bar{v}=v_{x} \hat{e}_{x}+v_{y} \hat{e}_{y}+v_{z} \hat{e}_{z} \quad \bar{w}=w_{x} \hat{e}_{x}+w_{y} \hat{e}_{y}+w_{z} \hat{e}_{z}
$$

Absolute value: $|\bar{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}$

Scalar product:

$$
\begin{aligned}
& c=\bar{v} \cdot \bar{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z} \\
& c=|\bar{v}||\bar{w}| \cos \alpha
\end{aligned}
$$

therefore,

- the angle between two vectors can be calculated from:

$$
\cos \alpha=\frac{\bar{v} \cdot \bar{w}}{|\bar{v}||\bar{w}|}
$$

- the absolute value can be calculated as: $|\bar{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}=\sqrt{\bar{v} \cdot \bar{v}}$

Warning: never write \bar{v}^{2}. It is not clear which product you are using

Cross product:

$\bar{v} \times \bar{w}=\left|\begin{array}{ccc}\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z}\end{array}\right|=\left(v_{y} w_{z}-v_{z} w_{y}\right) \hat{e}_{x}+\left(v_{z} w_{x}-v_{x} w_{z}\right) \hat{e}_{y}+\left(v_{x} w_{y}-v_{y} w_{x}\right) \hat{e}_{z}$
$|\bar{v} \times \bar{w}|=|\bar{v}||\bar{w}| \sin \alpha$
the direction is perpendicular to both \bar{v} and \bar{w}
 and the orientation is determined with the right hand rule

VECTORS: projections in the direction of another vector

Let's consider two vectors in Cartesian coordinates:

$$
\bar{v}=v_{x} \hat{e}_{x}+v_{y} \hat{e}_{y}+v_{z} \hat{e}_{z} \quad \bar{w}=w_{x} \hat{e}_{x}+w_{y} \hat{e}_{y}+w_{z} \hat{e}_{z}
$$

The scalar projection of \bar{w} in the direction of \bar{v} is the scalar:

$$
w_{v}=|\bar{w}| \cos \alpha=\frac{\bar{w} \cdot \bar{v}}{|\bar{v}|}
$$

The vector projection of \bar{w} in the direction of \bar{v} is the vector:

$$
\bar{w}_{v}=|\bar{w}| \cos \alpha \hat{e}_{v}
$$

Exercise:

Prove that

$$
\bar{w}_{v}=\frac{\bar{w} \cdot \bar{v}}{|\bar{v}|^{2}} \bar{v}
$$

You can use the expression above to prove that:

$$
\begin{aligned}
& a_{x}=\bar{a} \cdot \hat{e}_{x} \\
& a_{y}=\bar{a} \cdot \hat{e}_{y} \\
& a_{z}=\bar{a} \cdot \hat{e}_{z}
\end{aligned}
$$

VECTORS: distance between two points

Let's consider two position vectors \bar{v}, \bar{w} that identify two points, P and Q .

The distance between P and Q is the length L of the vector $\bar{c}=\bar{v}-\bar{w}$

$$
\begin{aligned}
L & =|\bar{c}|=\sqrt{\bar{c} \cdot \bar{c}}=\sqrt{(\bar{v}-\bar{w}) \cdot(\bar{v}-\bar{w})}= \\
& =\sqrt{\bar{v} \cdot \bar{v}-\bar{v} \cdot \bar{w}-\bar{w} \cdot \bar{v}+\bar{w} \cdot \bar{w}}= \\
& =\sqrt{|\bar{v}|^{2}+|\bar{w}|^{2}-2 \bar{v} \cdot \bar{w}} \\
L & =\sqrt{|\bar{v}|^{2}+|\bar{w}|^{2}-2 \bar{v} \cdot \bar{w}}
\end{aligned}
$$

Warning: never write \bar{v}^{2}. It is not clear which product you are using.

CYLINDRICAL COORDINATE SYSTEMS

A point P can be identified by the coordinates:
x, y, z (Cartesian coordinates)
ρ, ϕ, z (cylindrical coordinates)

$$
\left\{\begin{array}{l}
x=\rho \cos \varphi \\
y=\rho \sin \varphi \\
z=z
\end{array}\right.
$$

The basis vectors are:
$\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ in the Cartesian coordinate system
$\hat{e}_{\rho}, \hat{e}_{\varphi}, \hat{e}_{z}$ in the cylindrical coordinate system
The direction of the basis vectors in a cylindrical coordinate system depends on the position.

$$
\left\{\begin{array}{l}
\hat{e}_{\rho}=\cos \varphi \hat{e}_{x}+\sin \varphi \hat{e}_{y} \\
\hat{e}_{\varphi}=-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y} \\
\hat{e}_{z}=\hat{e}_{z}
\end{array}\right.
$$

IMPORTANT:The basis vectors in a cylindrical coordinate system are orthonormal:

$$
\left\{\begin{array}{l}
\hat{e}_{\rho} \cdot \hat{e}_{\varphi}=\left(\cos \varphi \hat{e}_{x}+\sin \varphi \hat{e}_{y}\right) \cdot\left(-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y}\right)=-\sin \varphi \cos \varphi+\sin \varphi \cos \varphi=0 \\
\hat{e}_{\rho} \cdot \hat{e}_{z}=\left(\cos \varphi \hat{e}_{x}+\sin \varphi \hat{e}_{y}\right) \cdot \hat{e}_{z}=0 \\
\hat{e}_{\varphi} \cdot \hat{e}_{z}=\left(-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y}\right) \cdot \hat{e}_{z}=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\hat{e}_{\rho} \cdot \hat{e}_{\rho}=1 \\
\hat{e}_{\varphi} \cdot \hat{e}_{\varphi}=1 \\
\hat{e}_{z} \cdot \hat{e}_{z}=1
\end{array}\right.
$$

Example: THE MAGNETIC FIELD AROUND A STRAIGHT WIRE

The magnetic field \bar{B} around a straight wire which carries an electric current I depends on the distance from the wire. The amplitude of the magnetic field is:

$$
|\bar{B}|=\frac{\mu_{0} I}{2 \pi \rho}
$$

The direction is perpendicular to the wire, in the azimuthal direction. So, it is more convenient to express the filed using cylindrical coordinates:

$$
\bar{B}=\frac{\mu_{0} I}{2 \pi \rho} \hat{e}_{\varphi}
$$

Note that: \hat{e}_{φ} depends on the position. The direction of \bar{B} in P is different from the direction in P^{\prime}.

In cartesian coordinates, the expression of the field looks more complicated:

$$
\bar{B}=\frac{\mu_{0} I}{2 \pi \rho}\left(\frac{-y \hat{e}_{x}+x \hat{e}_{y}}{\sqrt{x^{2}+y^{2}}}\right)
$$

ADDITION OF VECTORS DEFINED IN DIFFERENT COORDINATE SYSTEMS

Consider two vectors:

$$
\begin{aligned}
& \bar{v}=(2,1,0) \quad \text { in the Cartesian coordinate system } \\
& \bar{w}=(2,0,0)
\end{aligned} \text { in the cylindrical coordinate system }
$$

Let's rewrite the vectors using the basis of the coordinate systems:

$$
\begin{aligned}
& \bar{v}=(2,1,0)=2 \hat{e}_{x}+\hat{e}_{y} \\
& \begin{aligned}
& \bar{w}=(2,0,0)=2 \hat{e}_{\rho} \\
& \bar{v}+\bar{w}=2 \hat{e}_{x}+\hat{e}_{y}+2 \hat{e}_{\rho}=2 \hat{e}_{x}+\hat{e}_{y}+2\left(\cos \varphi \hat{e}_{x}+\sin \varphi \hat{e}_{y}\right)= \\
& \quad=(2+2 \cos \varphi) \hat{e}_{x}+(1+2 \sin \varphi) \hat{e}_{y}
\end{aligned}
\end{aligned}
$$

> It is always convenient to express a vector using the basis of the coordinate system.

CYLINDRICAL COORDINATE SYSTEMS: the position vector

The position vector \bar{r} of a point P is a vector from the origin to the point P.
In general, the position vector in Cartesian coordinates x, y, z is expressed as:

$$
\bar{r}=(x, y, z)=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}
$$

Now, consider a cylindrical coordinate system ρ, φ, z.
Is it correct to say that the position vector in a cylindrical coordinate system can be expressed as:

$$
-\bar{r}=(\rho, \varphi, z)=\rho \hat{e}_{\rho}-t-\varphi \hat{e}_{\varphi}-t z \hat{e}_{\bar{z}}-?
$$

No!

The position vector in cylindrical coordinate is: $\bar{r}=\rho \hat{e}_{\rho}+z \hat{e}_{z}$

CYLINDRICAL COORDINATE SYSTEMS: differential elements

Assume that the radius of the cylinder is ρ_{0}, and the height z_{0}. The arc l defined by the angle φ on the circumference C has length: $l=\varphi \rho$.
The differential elements are:

$$
\begin{aligned}
& d l=\rho d \varphi \\
& d S_{z}=\rho d \varphi d \rho \\
& d S_{\rho}=\rho d \varphi d z \\
& d V=\rho d \varphi d \rho d z
\end{aligned}
$$

$$
\begin{aligned}
& C=\int d l=\int_{0}^{2 \pi} \rho_{0} d \varphi=2 \pi \rho_{0} \\
& S_{z}=\int d S_{z}=\int_{0}^{\rho_{0}} \int_{0}^{2 \pi} \rho d \varphi d \rho=\pi \rho_{0}{ }^{2} \\
& S_{\rho}=\int d S_{\rho}=\int_{0}^{z_{0}} \int_{0}^{2 \pi} \rho_{0} d \varphi d z=2 \pi \rho_{0} z_{0} \\
& V=\int d V=\int_{0}^{z_{0}} \int_{0}^{\rho_{0}} \int_{0}^{2 \pi} \rho d \varphi d \rho d z=\pi z_{0} \rho_{0}{ }^{2}
\end{aligned}
$$

SPHERICAL COORDINATE SYSTEMS

A point P can be identified by the coordinates: x, y, z (Cartesian coordinate system) r, θ, ϕ (spherical coordinate system)
$0 \leq r \leq \infty$
$0 \leq \theta \leq \pi$
$0 \leq \varphi \leq 2 \pi$
$\left\{\begin{array}{l}x=r \sin \theta \cos \varphi \\ y=r \sin \theta \sin \varphi \\ z=r \cos \theta\end{array}\right.$
The basis vectors are:
$\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ in the Cartesian coordinate system $\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\varphi}$ in the spherical coordinate system
The direction of the basis vectors in a cylindrical coordinate system depends on the position.

$$
\left\{\begin{array}{l}
\hat{e}_{r}=\sin \theta \cos \varphi \hat{e}_{x}+\sin \theta \sin \varphi \hat{e}_{y}+\cos \theta \hat{e}_{z} \\
\hat{e}_{\theta}=\cos \theta \cos \varphi \hat{e}_{x}+\cos \theta \sin \varphi \hat{e}_{y}-\sin \theta \hat{e}_{z} \\
\hat{e}_{\varphi}=-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y}
\end{array}\right.
$$

IMPORTANT. The basis vectors in a spherical coord. sys. are orthonormal:

$$
\hat{e}_{r} \cdot \hat{e}_{\theta}=0, \quad \hat{e}_{r} \cdot \hat{e}_{\varphi}=0, \quad \hat{e}_{\theta} \cdot \hat{e}_{\varphi}=0 \quad \hat{e}_{r} \cdot \hat{e}_{r}=1, \quad \hat{e}_{\theta} \cdot \hat{e}_{\theta}=1, \quad \hat{e}_{\varphi} \cdot \hat{e}_{\varphi}=1
$$

Example: THE ELECTRIC FIELD PRODUCED BY A POINT CHARGE

The electric field \bar{E} produced by a point charge with electric charge Q has amplitude:

$$
|\bar{E}|=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}
$$

and, if the charge is located in the origin, its direction is radial. So, it is convenient to use a spherical coordinate system to express the electric field:

$$
\bar{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \hat{e}_{r}
$$

Note: \hat{e}_{r} depends on the position! The direction of \bar{E} in P is different from the direction in P^{\prime}.

In cartesian coordinates, the expression of the electric field looks more complicated:

$$
\bar{E}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad \Rightarrow \mathrm{t} \text { is much more convenient to use spherical coordinates }
$$

SPHERICAL COORDINATE SYSTEMS: the position vector

Consider a spherical coordinate system r, θ, ϕ
Is the position vector in a spherical coordinate system:
$-\bar{r}=\left(r, \theta_{5} \varphi\right)=r \hat{e}_{\rho}-+\theta \hat{e}_{\sigma}+\varphi \hat{e}_{\bar{\varphi}}$?
No!

Exercise:

express the position vector in a spherical coordinate system.

The position vector in a spherical coordinate system is: $\bar{r}=r \hat{e}_{r}$

SPHERICAL COORDINATE SYSTEMS: differential elements

Assume that the radius of the sphere is r_{0},

- The arc l_{θ} parallel to the x-z plane has length: $l_{\theta}=\theta r$.
- The arc l_{φ} parallel to the $x-y$ plane has length: $l_{\varphi}=\varphi r \sin \theta$.

The differential elements are:

$$
\begin{aligned}
& d l_{\theta}=r d \theta \\
& d l_{\varphi}=r \sin \theta d \varphi \\
& d S_{r}=r^{2} \sin \theta d \varphi d \theta \\
& d V=r^{2} \sin \theta d \varphi d \theta d r
\end{aligned}
$$

$$
\begin{aligned}
& S_{r}=\int d S_{r}=\int_{0}^{\pi} \int_{0}^{2 \pi} r_{0}^{2} \sin \theta d \theta d \varphi=4 \pi r_{0}^{2} \\
& V=\int d V=\int_{0}^{r_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} r_{0}^{2} \sin \theta d \theta d \varphi d r=\frac{4}{3} \pi r_{0}^{3}
\end{aligned}
$$

SCALAR PRODUCT IN CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The scalar product in cylindrical and spherical coordinate systems can be calculated in a way similar to the Cartesian. This is because the basis vectors are orthonormal.
cartesian coordinate system:

$$
\left.\begin{array}{l}
\bar{v}=v_{x} \hat{e}_{x}+v_{y} \hat{e}_{y}+v_{z} \hat{e}_{z} \\
\bar{w}=w_{x} \hat{e}_{x}+w_{y} \hat{e}_{y}+w_{z} \hat{e}_{z}
\end{array}\right\} \Rightarrow \bar{v} \cdot \bar{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

cylindrical coordinate system:

$$
\begin{aligned}
& \bar{v}=v_{\rho} \hat{e}_{\rho}+v_{\varphi} \hat{e}_{\varphi}+v_{z} \hat{e}_{z} \\
& \bar{w}=w_{\rho} \hat{e}_{\rho}+w_{\varphi} \hat{e}_{\varphi}+w_{z} \hat{e}_{z}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\end{array}\right\} \Rightarrow \begin{aligned}
\bar{v} \cdot \bar{w} & =\left(v_{\rho} \hat{e}_{\rho}+v_{\varphi} \hat{e}_{\varphi}+v_{z} \hat{e}_{z}\right) \cdot\left(w_{\rho} \hat{e}_{\rho}+w_{\varphi} \hat{e}_{\varphi}+w_{z} \hat{e}_{z}\right)= \\
& =v_{\rho} \hat{e}_{\rho} \cdot w_{\rho} \hat{e}_{\rho}-v_{\rho} \hat{e}_{\rho} \cdot w_{o} \hat{e} v_{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remember that: } \\
& \left\{\begin{array} { l }
{ \hat { e } _ { \rho } \cdot \hat { e } _ { \varphi } = 0 } \\
{ \hat { e } _ { \rho } \cdot \hat { e } _ { z } = 0 } \\
{ \hat { e } _ { \varphi } \cdot \hat { e } _ { z } = 0 }
\end{array} \quad \left\{\begin{array}{l}
\hat{e}_{\rho} \cdot \hat{e}_{\rho}=1 \\
\hat{e}_{\varphi} \cdot \hat{e}_{\varphi}=1 \\
\hat{e}_{z} \cdot \hat{e}_{z}=1
\end{array}\right.\right.
\end{aligned}
$$

spherical coordinate system:
(in a way similar to the cylindrical, one can prove that:)

$$
\left.\begin{array}{l}
\bar{v}=v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{\varphi} \hat{e}_{\varphi} \\
\bar{w}=w_{r} \hat{e}_{r}+w_{\theta} \hat{e}_{\theta}+w_{\varphi} \hat{e}_{\varphi}
\end{array}\right\} \Rightarrow \bar{v} \cdot \bar{w}=v_{r} w_{r}+v_{\theta} w_{\theta}+v_{\varphi} w_{\varphi}
$$

CROSS PRODUCT IN CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The cross product in cylindrical and spherical coordinate systems can be calculated in a way similar to the Cartesian. This is because the basis vectors are orthonormal.
cartesian coordinate system:

$$
\left.\begin{array}{l}
\bar{v}=v_{x} \hat{e}_{x}+v_{y} \hat{e}_{y}+v_{z} \hat{e}_{z} \\
\bar{w}=w_{x} \hat{e}_{x}+w_{y} \hat{e}_{y}+w_{z} \hat{e}_{z}
\end{array}\right\} \Rightarrow \bar{v} \times \bar{w}=\left|\begin{array}{ccc}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right|=\left(v_{y} w_{z}-v_{z} w_{y}\right) \hat{e}_{x}+\left(v_{z} w_{x}-v_{x} w_{z}\right) \hat{e}_{y}+\left(v_{x} w_{y}-v_{y} w_{x}\right) \hat{e}_{z}
$$

cylindrical coordinate system:

$$
\left.\begin{array}{l}
\bar{v}=v_{\rho} \hat{e}_{\rho}+v_{\varphi} \hat{e}_{\varphi}+v_{z} \hat{e}_{z} \\
\bar{w}=w_{\rho} \hat{e}_{\rho}+w_{\varphi} \hat{e}_{\varphi}+w_{z} \hat{e}_{z}
\end{array}\right\} \Rightarrow \bar{v} \times \bar{w}=\left|\begin{array}{lll}
\hat{e}_{\rho} & \hat{e}_{\varphi} & \hat{e}_{z} \\
v_{\rho} & v_{\varphi} & v_{z} \\
w_{\rho} & w_{\varphi} & w_{z}
\end{array}\right|=\left(v_{\varphi} w_{z}-v_{z} w_{\varphi}\right) \hat{e}_{\rho}+\left(v_{z} w_{\rho}-v_{\rho} w_{z}\right) \hat{e}_{\varphi}+\left(v_{\rho} w_{\varphi}-v_{\varphi} w_{\rho}\right) \hat{e}_{z}
$$

spherical coordinate system:

$$
\left.\begin{array}{l}
\bar{v}=v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{\varphi} \hat{e}_{\varphi} \\
\bar{w}=w_{r} \hat{e}_{r}+w_{\theta} \hat{e}_{\theta}+w_{\varphi} \hat{e}_{\varphi}
\end{array}\right\} \Rightarrow \bar{v} \times \bar{w}=\left|\begin{array}{lll}
\hat{e}_{r} & \hat{e}_{\theta} & \hat{e}_{\varphi} \\
v_{r} & v_{\theta} & v_{\varphi} \\
w_{r} & w_{\theta} & w_{\varphi}
\end{array}\right|=\left(v_{\theta} w_{\varphi}-v_{\varphi} w_{\theta}\right) \hat{e}_{r}+\left(v_{\varphi} w_{r}-v_{r} w_{\varphi}\right) \hat{e}_{\theta}+\left(v_{r} w_{\theta}-v_{\theta} w_{r}\right) \hat{e}_{\varphi}
$$

INTEGRALS OF EXPRESSIONS CONTAINING VECTORS

In practical application, you will find often integrals of vectors.

- If the vector is expressed in a Cartesian coordinate system, this is not a problem
- If the vector is not expressed in a Cartesian coordinate system, we must be very carefull
(1) Vector expressed in a Cartesian coordinate system
- The basis of a Cartesian coordinate system, $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$ are constant: they always point in the same direction and their absolute value is $1 \rightarrow$ we can move them out of the integral.
- Example: $\int_{0}^{2} \bar{v} d x$ with $\bar{v}=z x \hat{e}_{x}+y \hat{e}_{y}+x y \hat{e}_{z}$

$$
\begin{array}{r}
\int_{0}^{2}\left(z x \hat{e}_{x}+y \hat{e}_{y}+x y \hat{e}_{z}\right) d x=\int_{0}^{2} z x \hat{e}_{x} d x+\int_{0}^{2} y \hat{e}_{y} d x+\int_{0}^{2} x y \hat{e}_{z} d x=z \hat{e}_{x} \int_{0}^{2} x d x+y \hat{e}_{y} \int_{0}^{2} d x+y \hat{e}_{z} \int_{0}^{2} x d x \\
=z \hat{e}_{x}\left[\frac{x^{2}}{2}\right]_{0}^{2}+y \hat{e}_{y}[x]_{0}^{2}+y \hat{e}_{z}\left[\frac{x^{2}}{2}\right]_{0}^{2}=2 z \hat{e}_{x}+2 y \hat{e}_{y}+2 y \hat{e}_{z}
\end{array}
$$

INTEGRALS OF EXPRESSIONS CONTAINING VECTORS

(2) Vector expressed in a non-Cartesian coordinate system

- The basis might not be constant in space: the direction could depend on the position.
- we can NOT move them out of the integral.
- we need to express the basis vectors using the Cartesian basis (that are constant)
- Example in a cylindrical coordinate system:

$$
\int_{-\pi / 2}^{\pi / 2} \bar{v} d \varphi \quad \text { with } \quad \bar{v}=\rho \hat{e}_{\varphi}
$$

- \hat{e}_{φ} depends on the angle φ, so it depends on the variable of integration.
- So, we cannot move the vector outside the integral.
- We need to express the vectro in a Cartesian coordinate system:

$$
\begin{aligned}
& \hat{e}_{\varphi}=-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y} \\
& \begin{aligned}
&-\pi / 2 \\
& \pi / 2 \hat{e}_{\varphi} d \varphi
\end{aligned} \\
& =\rho \int_{-\pi / 2}^{\pi / 2}\left(-\sin \varphi \hat{e}_{x}+\cos \varphi \hat{e}_{y}\right) d \varphi=\rho \int_{-\pi / 2}^{\pi / 2}(-\sin \varphi) \hat{e}_{x} d \varphi+\rho \int_{-\pi / 2}^{\pi / 2} \cos \varphi \hat{e}_{y} d \varphi= \\
& \\
& =\rho \hat{e}_{x} \int_{-\pi / 2}^{\pi / 2}(-\sin \varphi) d \varphi+\rho \hat{e}_{y} \int_{-\pi / 2}^{\pi / 2} \cos \varphi d \varphi=\rho \hat{e}_{x}[\cos \varphi]_{-\pi / 2}^{\pi / 2}+\rho \hat{e}_{y}[\sin \varphi]_{-\pi / 2}^{\pi / 2}=2 \rho \hat{e}_{y}
\end{aligned}
$$

