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VECTORS

A vector is a quantity with magnitude and direction
Y

A

Let’s consider a vector in
Cartesian coordinates: v =(1,2,0)

which arrow in the figure
represents best the vector v ?

* thered B
= theblue Y%
= thegreen @ .

= all of them A\ .

Plot the vector v = (1, 2, O) (in a Cartesian coord. sis.)
in the point P DY

Plot the position vector 7 =(2,1,0)
(with the components in cartesian coordinates)
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VECTORS: addition and subtraction

Let’s consider two vectors in A
Cartesian coordinates:

V:(vx,vy,vz)
Wz(wx,wy,wz)
Addition:

c =v+w=(vx+wx,vy+wy,vz+wz)

Subtraction: y

d

I
<|

—w=(vx — WV, =W,V —wz)

|
Il

V+(—w)
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VECTORS: addition and subtraction
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VECTORS: addition and subtraction
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VECTORS: addition and subtraction
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BASIS VECTORS IN CARTESIAN COORDINATES

The basis vectors are vectors of length 1
and direction along the axes.

In a Cartesian coordinate system, the basis

vectors are:
é.=(1,0,0) ¢ =(0,1,0) & =(0,0,1)
Let’s consider the vector v =(2,4,3)in
Cartesian coordinates:
v =(2,4,3)=(2,0,0)+(0,4,0)+(0,0,3) =
2(1,0,0)+(0,4,0)+3(0,0,1) = 26, +4é, +3¢.

In general, any vector can be represented
using the basis vectors of the coordinate

system:

w=(a,b,c)=ae, +be, +ce,

Exercise:
Use the scalar product and the basis vectors to

express the y-component v, of a vector v

y

A

N>

v

Y QN>
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VECTORS: absolute value, scalar product, and cross product

Let’s consider two vectors in Cartesian

coordinates: ‘

v=ve tve +v.e w=we +we, +we,

Absolute value: ‘v‘ = \/Vi + Vi +v?

Scalar product:
C=V-W=VW +V W +Vw,

c:‘VHW‘cosa

v

therefore,
= the angle between two vectors can be
calculated from: V-w

cosqt =——
V][

= the absolute value can be calculated as: |V| = 1/v}f —I—vi —I—VZ2 =/V-V

Warning: never write 72, It is not clear which product you are using

Cross product:

e, e, e
VXW=|v, v, v |= (vywz —vzwy)éx +(v.w, —v,w,)e, +(vxwy —vywx)éz
we oW, W,

|V>< v_v| = |V||v_v| sin o

the direction is perpendicular to both v and w

and the orientation is determined with the right hand rule

=

<|
X
=l
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VECTORS: projections in the direction of another vector

A

Let’s consider two vectors in Cartesian
coordinates:

v=ve + vyéy +v.e, o o
The scalar projection of w in the direction of v

is the scalar:

WV
V]

w, = ‘v_v‘ cosa =

The vector projection of w in the direction of v

is the vector:
w, = ‘w‘ cosa e,

<|

Exercise:
— w )

Prove that |_ _
w, = ‘ v

<

‘2

>

You can use the expression
above to prove that:
Y y

>
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VECTORS: distance between two points

Let’s consider two position vectors v, w N
that identify two points, P and Q.

The distance between P and Q is the length

L of the vector c=v—w

L=[e|=Ve-c=|(v-%)(v-w) =

W=

=
<l
_|_
=

=V V-V -w—

=\/|v|2 +[w]* 27w

v

L=\[vf +[w 27 %

Warning: never write 2. It is not clear which product you are using.




CYLINDRICAL COORDINATE SYSTEMS »

A point P can be identified by the coordinates:

X, ¥, z (Cartesian coordinates)
0, ¢ z (cylindrical coordinates)

X = pCcosQ
y=psing

zZ=Z

v

The basis vectors are:

€ ,é ,€. inthe Cartesian coordinate system

x27y27z

ép, éq), éz in the cylindrical coordinate system

The direction of the basis vectors in a
cylindrical coordinate system depends on the

position.

e, = cosge +singe,
e, =—singe, +cosge,

= ez

N>

z

IMPORTANT:The basis vectors in a cylindrical coordinate system are orthonormal:

(cosge, +singe,)-(—singe_+cosge, ) =—singcosp+sinpcosp =0

>
>

p e
,-e.= (cosge, +singe )-e =0
e, e, =(—singe, +cospe,)-e. =0

AS]
N

>

>

Q>

>

>

NCB >

_— e
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Example: THE MAGNETIC FIELD AROUND A STRAIGHT WIRE

The magnetic field B around a straight wire which
carries an electric current | depends on the distance
from the wire. The amplitude of the magnetic field is:

‘ E‘ _ Ml
2o

The direction is perpendicular to the
wire, in the azimuthal direction. So,
it is more convenient to express the
filed using cylindrical coordinates:

gl
270 7

Note that: ¢, depends on the
position. The direction of B in P is
different from the direction in P’.

In cartesian coordinates, the
expression of the field looks more
complicated:

B ud | —ve, +xéy]

27\ \Jx*+ 57




ADDITION OF VECTORS DEFINED IN
DIFFERENT COORDINATE SYSTEMS

Consider two vectors:

= (29 1, 0) in the Cartesian coordinate system

(29 0, O) in the cylindrical coordinate system

—-—

Is this correct: v+w=

VAT z12,40)+2;60)1=(4,1,00? NO

Let’s rewrite the vectors using the basis of the coordinate systems

2,1,0)=2e, +é,

7=
#=(2,0,0)=2

v+w=2e +e, +2e, =2e +e, +2(cospe, +singe )=

=(2+2cosp)e, +(1+2sinp)e,

It is always convenient to express a vector
using the basis of the coordinate system.

It will avoid major misunderstandings and errors!



CYLINDRICAL COORDINATE SYSTEMS: the position vector

The position vector 7 of a point P is a
vector from the origin to the point P.

In general, the position vector in
Cartesian coordinates x,y,z is expressed
as:

r=(x,y,z)=xe, +ye, +ze

Now, consider a cylindrical coordinate
system p,p,z.
Is it correct to say that the position vector
in a cylindrical coordinate system can be
expressed as:

~F ={ps952) =pe, e, 26 - ?
No!

The position vector in cylindrical
coordinate is:

r=pe,+ze,

y

el
IS |

A
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CYLINDRICAL COORDINATE SYSTEMS: differential elements

A

4
Assume that the radius of the cylinder is

Py and the height z,. The arc / defined by

the angle @ on the circumference C has db‘» i
length: [=gp. 2 pde
The differential elements are:

dl = pdo

dsS. = pdod p
ds, = pdod:z
dV = pded pdz

2
C= Idl = jo Pod e =27p,
Sz - IdSz - jopo jom pd(pdp B 7['002 |
zy (27
Sp - IdSP - Io .[0 'Oodqodz N 27['0020

V= IdV - J:O J‘op0 Iozﬂ pded pdz = ”Zopoz
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SPHERICAL COORDINATE SYSTEMS

A point P can be identified by the coordinates: z

X, ¥, z (Cartesian coordinate system)

r, 8, ¢ (spherical coordinate system) .
0<r<w ,/ |
0<O0<rx \ e

O<o<2, M- 7 L

x=rsinfcosep g G \

——

y=rsin@sing B 7

P’ 0\ r

z=rcos@

The basis vectors are: .. 7/ -

N A e

]

€.,€,,€, in the Cartesian coordinate system

Il [

AS)
’
’
’
\
\

N

€,,€,€, in the spherical coordinate system : < __ ¥ ST ]

The direction of the basis vectors in a -
cylindrical coordinate system depends "
on the position. g
e, =sinfcospe, +sindsinge +cosbe, g

1€, =cosfcospe, +cosfsinge, —sinbe,

e, =—singe _+cosge,

N

IMPORTANT. The basis vectors in a spherical coord. sys. are orthonormal:
é,-6,=0, ¢-¢,=0, ¢-6,=0 é-¢=1, ¢-¢=1 ¢, ¢ =1

r r (4 r

26



Example: THE ELECTRIC FIELD PRODUCED BY A POINT CHARGE

The electric field E produced by a point charge with

electric charge Q has amplitude: t
_ 1 O
El=—5
TE, T

A

and, if the charge is located in the origin, its direction is
radial. So, it is convenient to use a spherical coordinate
system to express the electric field:

= 1
Fo_ 1o
Arg, r

éI"
Note: ¢. depends on the position! The direction of E in P is different from the direction in P’.
In cartesian coordinates, the expression of the

electric field looks more complicated:

Q xe +ye +ze,

e 47s, (x2 +y° 42’ )3/2

= It is much more convenient to use spherical coordinates



SPHERICAL COORDINATE SYSTEMS: the position vector

Consider a spherical coordinate system r, 6, ¢ z

Is the position vector in a spherical
coordinate system:

= sl p)=re s 0+ 92, 7

Nol!

B~
___________________

Exercise:
express the position vector in a
spherical coordinate system.

S_——_—-

The position vector in a spherical \ 4
coordinate system is: |7 = /




SPHERICAL COORDINATE SYSTEMS: differential elements

Assume that the radius of the sphereis r,

= The arc /, parallel to the x-z plane has
length: [,=0r.

= The arc l¢ parallel to the x-y plane has
length: [, =@ rsin®.

The differential elements are:
dl, =rd6

dl, =rsinfdg

ds, =r’sindpdo
dV = r* sin Od pd Odr

>
1
|

rd@

dv
X

S, =[ds, = ["[ " sin0dodp = 4mr?
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SCALAR PRODUCT IN
CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The scalar product in cylindrical and spherical coordinate systems can be calculated in a way
similar to the Cartesian. This is because the basis vectors are orthonormal.

cartesian coordinate system:
v=ve tve tve,
=

w=we +we +we,

V-WwW=vw + VyWy TV W,

cylindrical coordinate system:
V=%@+%@+g@ L X X X A A A
B A A A =>v-w=(ve,+ve, +v.e)(we +we,+we)=
w=we, +we,+w.e,

— A A ., e L
_Q%%M??{&&:%eém%ﬁﬁﬂi =0
- — - [ =

Remember that: T R S S s ol e

5 .6=0 (&6, =1 LVlo Welh {V@e@_%e&@f& w.e ¥

¢ ¢ =0 €€ = - = \’-{ —_————

ép . éz =0 é(p . é{p =1 Q‘iie‘ _W J% ¥ &eL -11} %ep-fvze{ 71’2232/) - 1

e,e.=0 .- =1

b 'WZVpr-I—V(pW(p-FVZWZ

spherical coordinate system:

(in a way similar to the cylindrical, one can prove that:)

VW=VW, 4 VW, VW,

V=ve +ve,+tve, }
=

g
=w.e, +Wse, +w,e,

=
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CROSS PRODUCT IN
CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The cross product in cylindrical and spherical coordinate systems can be calculated in a way
similar to the Cartesian. This is because the basis vectors are orthonormal.

cartesian coordinate system:
_ ~ A ~ e, e ¢
v=ve +ve +v o
yy z7z — A A A
_ . . . = |vxw=lv, v, v |=(w -vwie +(v.w —vw e +(vow, —v w)e
w=we +we +Ww
Y 2 w,ow, W,

cylindrical coordinate system:

v=ve +ve +ve P Te E
pop ) z7z - — . A A A
s Awd sw = vxw=\v, v, v |=w -v.w)e +(v.w,—v w)e, +(v,w,-v,w)e.
pEp o 9 2z wow. W
P 9 z
spherical coordinate system:
V=ve +ve,+tve, T
_ R ) ) = Vxw=v, v, v, =W, —v,wye. +(v,w, —v.w,)e, + (v.w, —v,w,)e,
w=we +we,+we
v W, W, W,

31



INTEGRALS OF EXPRESSIONS CONTAINING VECTORS

In practical application, you will find often integrals of vectors.
= |f the vector is expressed in a Cartesian coordinate system, this is not a problem

(1) Vector expressed in a Cartesian coordinate system
= The basis of a Cartesian coordinate system, &y, é,, €, are constant: they always point in
the same direction and their absolute value is 1 = we can move them out of the integral.

2

= Example: dex

[w)

O ey 1O

(zxéx +ye, +xye, )dx =

|

2 2
zxe dx + I ye,dx + I xye.dx = ze,
0 0

2

|

with v =zxe +ye, +xye,

2

0

A 2 A
+y€y [X]O +y€z|: 5

2
X

2 2
xdx + yéyJ.dx + ye. I xdx
0

0

2

0

If the vector is not expressed in a Cartesian coordinate system, we must be very carefull

2

0

=2ze +2ye, +2ye,

32



INTEGRALS OF EXPRESSIONS CONTAINING VECTORS

(2) Vector expressed in a non-Cartesian coordinate system

= The basis might not be constant in space: the direction could depend on the position.
o we can NOT move them out of the integral.
o we need to express the basis vectors using the Cartesian basis (that are constant)

= Example in a cylindrical coordinate system:
/2
[ vdp  with v=pe,
—7/2
o &, depends on the angle ¢, so it depends on the variable of integration.

o So, we cannot move the vector outside the integral.
o We need to express the vectro in a Cartesian coordinate system:

e, =—singe, +cospe,
/2 /2 /2 /2
I pe,dp=p I (—singoéercosgoéy)dgo =p j (—singo)éxdgoer I cospe dp =
-7/2 -7/2 -7/2 -7/2
/2 /2

= peé, j (—sinp)dp+pe, j cos pdp =pé_|cos (p]iz/2 + pé, [sin qo]iz/z =2pe,

—7/2 —7/2

33
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