

## GAUSS's THEOREM. Logic steps to prove the theorem

- 1- Consider a closed surface.
- 2- Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element  $dS_1$  on the upper surface.
- 3- Consider the projection of the surface element on the xy plane, it will be dxdy. The projection will identify a infinitesimal surface element  $(dS_2)$  on the lower surface.
- 4- Write the expression that relates dxdy to  $dS_1$  and  $dS_2$ .
- 5- Write down the volume integral of  $div\overline{A}$
- 6- Split the volume integral into three terms.
  - 6.1- Consider only the term which depends on the z-derivative of  $A_z$ .
  - 6.2- Remove the z-derivative by solving the integral in dz. What will remain is just the integral in dxdy.
  - 6.3- Express dxdy in order to obtain  $dS_1$  and  $dS_2$ .
  - 6.4- Re-arrange the integrals in  $dS_1$  and  $dS_2$  in order to have obtain a flux integral of  $(0,0,A_2)$ .
- 7- Repeat the same for the terms which depend on the x-derivative of  $A_x$  and on the y-derivative of  $A_y$ .
- 8- Add all the three terms together in order to obtain the flux of  $\overline{A}$ .



## STOKES' THEOREM. Logic steps to prove the theorem

- 1- Consider a closed path and a surface whose boundary is defined by the closed path.
- 2- Divide the surface in small areas  $S^i$  and consider the projection of  $S^i$  on the xy, yz, xz planes
- 3- Prove the Stokes' theorem on  $S_z^i$ :
  - 3.1 Write the line integral of the vector field along the boundary of  $S_z^i$  and split the integral into three terms.
  - 3.2 Consider only the integral in dx and prove that  $\int_{L_z^i} A_x(x, y, z_0) dx = -\iint_{S^i} \frac{\partial A_x}{\partial y} dx dy$

3.3 Repeat the same for the integral in dy and dz

3.4 Add the three integrals in dx, dy and dz to obtain

3.5 Rewrite dxdy to obtain  $\int_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S^i} (rot\overline{A})_z \hat{e}_z \cdot d\overline{S}$ 

4- Prove the Stokes' theorem on 
$$S^i$$
:

 $\int_{L_z^i} \overline{A} \cdot d\overline{r} = \iint_{S_z^i} (rot\overline{A})_z dx dy$ 

4.1 Repeat the same procedure for  $S^i_{\ x}$  and  $S^i_{\ y}$ 

4.1 add together the expressions for the integrals in  $S_x^i$  to  $S_y^i$  and  $S_z^i$  obtaining:  $\int_{L^i} \overline{A} \cdot d\overline{r} = \iint_{c_i} rot \overline{A} \cdot d\overline{S}$ 

5- Prove the Stokes' theorem on S: add together all the expressions obtained for  $S^i$