GAUSS's THEOREM.

 Logic steps to prove the theorem1- Consider a closed surface.
2- Divide the surface in two parts, an upper surface and a lower surface and consider an infinitesimal surface element $d S_{1}$ on the upper surface.
3 - Consider the projection of the surface element on the xy plane, it will be dxdy. The projection will identify a infinitesimal surface element $\left(\mathrm{dS}_{2}\right)$ on the lower surface.
4- Write the expression that relates dxdy to dS_{1} and dS_{2}.
5- Write down the volume integral of $\operatorname{div} \bar{A}$
6- Split the volume integral into three terms.
6.1- Consider only the term which depends on the z-derivative of A_{z}.
6.2- Remove the z-derivative by solving the integral in dz .

What will remain is just the integral in dxdy.
6.3- Express dxdy in order to obtain dS_{1} and dS_{2}.
6.4- Re-arrange the integrals in dS_{1} and dS_{2} in order to have obtain a flux integral of $\left(0,0, A_{z}\right)$.
7- Repeat the same for the terms which depend on the x-derivative of A_{x} and on the y derivative of A_{γ}.
8- Add all the three terms together in order to obtain the flux of \bar{A}.

STOKES' THEOREM.
 Logic steps to prove the theorem

1- Consider a closed path and a surface whose boundary is defined by the closed path.
2- Divide the surface in small areas S^{i} and consider the projection of S^{i} on the $\mathrm{xy}, \mathrm{yz}, \mathrm{xz}$ planes
3- Prove the Stokes' theorem on S_{z}^{i} :
3.1 Write the line integral of the vector field along the boundary of S_{z}^{i} and split the integral into three terms.
3.2 Consider only the integral in dx and prove that $\int_{L_{2}^{\prime}} A_{x}\left(x, y, z_{0}\right) d x=-\iint_{S_{z}^{\prime}} \frac{\partial A_{x}}{\partial y} d x d y$
3.3 Repeat the same for the integral in $d y$ and $d z$
3.4 Add the three integrals in $d x, d y$ and $d z$ to obtain
3.5 Rewrite $d x d y$ to obtain $\int_{L_{z}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{\prime}}(r o t \bar{A})_{z} \hat{e}_{z} \cdot d \bar{S}$

$$
\int_{L_{2}^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S_{z}^{\prime}}(r o t \bar{A})_{z} d x d y
$$

4- Prove the Stokes' theorem on S^{i} :
4.1 Repeat the same procedure for S_{x}^{i} and S_{y}^{i}
4.1 add together the expressions for the integrals in S_{x}^{i} to S_{y}^{i} and S_{z}^{i} obtaining: $\int_{L^{\prime}} \bar{A} \cdot d \bar{r}=\iint_{S^{\prime}} r o t \bar{A} \cdot d \bar{S}$ 5- Prove the Stokes' theorem on S: add together all the expressions obtained for S^{i}

