Ce que j'eftime le plus eft cét abbregé pour l'invention des nombres parfaits, à quoy je fuis refolu de m'attacher, fi Monfieur Frenicle ne me fait part de fa methode. Voicy trois propofitions que j'ay trouvées,fur lefquelles j'efpere de faire un grand baftiment.

Les nombres moindres de l'unité que ceux qui procedent de la progreffion double, comme

I	2	3	4	5	6	7	8	9	10
I	3	7	15	31	63	127	$25 S$	511	1023
Ir	12	13	2047	4095	8191	$\& c$.			

Soient appellez les nombres parfaits, parceque toutes les fois qu'ils font premiers ils les produifent. Mettez au deffius de ces nombres, autant en progreffion naturelle 1. 2. 3. \&c. qui foient appellez leurs expofans.

Cela fuppofé, je dis,
I. Que lors que l'expofant d'un nombre radical eft compofé,fon radical eft auffi compofé, comme parceque 6. expofant de 63 . eft compofé, - je dis que 63 . eft auff compofé.
2. Lors que l'expofant eft nombre premier, je dis que fon radical moins l'unité eft mefuré par le double de l'expofant, comme parceque 7 . expofant de 127. eft nombre premier, je dis que $\mathbf{1 2 6}$. eft multiple de 14 .
3. Lors que l'expofant eft nombre premier, je dis que fon radical ne peut étre mefuré par aucun nombre premier que par ceux qui font plus grands de l'unité qu'un multiple du double de l'expofant, ou que le double de l'expofant. Comme parce que ir. expofant de 2047. eft nombre premier, je dis qu'il ne peut étre mefuré que par un nombre plus grand de l'unité que 22. comme 23 . oubien par un nombre plus grand de l'unité qu'un multiple de 22. en effet 2047. n'eft mefuré que par $23 . \&$ par 89 . duquel fi vous ôtez l'unité , refte 88 . multiple de 22 .

Voilà trois fort belles propofitions que j’ay trouvées \& prouvées non fans peine. Je les puis appeller les fondements de linvention des nombres parfaits. Je ne doute pas que Monficur Frenicle ne foit allé plus avant, mais je ne fais que commencer, \& fans doute ces propofitions pafferont pour tres-belles dans l'efprit de ceux qui n'ont pas beaucoup épluché ces matieres, $\&$ je feray bien aife d'apprendre le fentiment de Monfieur de Roberval.

What I esteem most is this short method for finding perfect numbers, to which I have resolved to devote myself, if Monsieur Frenicle does not share his method with me. Here are three propositions that I have found, on which I hope to build a great edifice.

The numbers one less than those that occur in a progression by doubling, such as

1	2	3	4	5	6	7	8	9	10	11	12	13	
1	3	7	15	31	63	127	255	511	1023	2047	4095	8191	etc.

That assumed, I say,

1. That when the exponent corresponding to a root is composite, the root itself is also composite, so because 6 , the exponent of 63 , is composite, I say that 63 is also composite.
2. When the exponent is prime, I say that the root less one is divisible by twice the exponent, so because 7 , the exponent of 127 , is prime, I know that 126 is a multiple of 14 .
3. When the exponent is prime, I say that the root may not be divided by any prime number except by those that are greater by one than a multiple of twice the exponent, or than the double of the exponent. So, because 11 , the exponent of 2047 , is prime, I know that it may only be divided by a number greater by one than 22 , namely 23 , or rather, by a number greater by one than a multiple of 22 . Indeed 2047 is only divisible by 23 and by 89 , from which if you take one, there remains 88 , a multiple of 22 .

These are three very beautiful propositions that I have found and proved, not without difficulty. I may call them the foundations for the discovery of perfect numbers. I do not doubt that Monsieur Frenicle has gone further, but I have only begun, and without doubt these propositions will pass as excellent in the mind of those who have not immersed themselves much in these matters, and I will be very happy to learn the reaction of Monsieur Roberval.
tagen från: J. Stedall, Mathematics Emerging: A Sourcebook 1540-1900

Litteratur:

- J. Stedall, Mathematics Emerging: A Sourcebook 1540-1900
- B. Wardhaugh, How to read historical mathematics
- M. Sean Mahoney, The Mathematical Career of [författare av ovanstående text]
- Oeuvres de [författare av ovanstående text], www.archive.org

