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160 chapter 6. early number theory

Fermat’s little theorem (1)
from Fermat to Mersenne, October 1640, as published in Fermat, Varia opera, 1679, 177

translation

What I esteem most is this short method for finding perfect numbers, to which I have
resolved to devote myself, if Monsieur Frenicle does not share his method with me.
Here are three propositions that I have found, on which I hope to build a great edifice.

The numbers one less than those that occur in a progression by doubling, such as
1 2 3 4 5 6 7 8 9 10 11 12 13

1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 etc.
may be called [roots of] perfect numbers, because whenever they are prime they pro-
duce them. Put above these numbers the natural progression 1, 2, 3, etc. which may be
called their exponents.
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6.1. perfect numbers and fermat’s little theorem 161

That assumed, I say,
1. That when the exponent corresponding to a root is composite, the root itself is

also composite, so because 6, the exponent of 63, is composite, I say that 63 is also
composite.

2. When the exponent is prime, I say that the root less one is divisible by twice the
exponent, so because 7, the exponent of 127, is prime, I know that 126 is a multiple
of 14.

3. When the exponent is prime, I say that the root may not be divided by any prime
number except by those that are greater by one than a multiple of twice the exponent,
or than the double of the exponent. So, because 11, the exponent of 2047, is prime, I
know that it may only be divided by a number greater by one than 22, namely 23, or
rather, by a number greater by one than a multiple of 22. Indeed 2047 is only divisible
by 23 and by 89, from which if you take one, there remains 88, a multiple of 22.

These are three very beautiful propositions that I have found and proved, not without
difficulty. I may call them the foundations for the discovery of perfect numbers. I do
not doubt that Monsieur Frenicle has gone further, but I have only begun, and without
doubt these propositions will pass as excellent in the mind of those who have not
immersed themselves much in these matters, and I will be very happy to learn the
reaction of Monsieur Roberval.

Fermat’s little theorem (2)
from Fermat to Frenicle, 18 October 1640, as published in Fermat, Varia opera, 1679, 164


