
DD1362 
Programming Paradigms

Philipp Haller

April 26th, 2021

Formal Languages and Syntactic Analysis 
Lecture 4

Review of Lecture 3
• Lexical analysis
• Derivations and parse trees
• Recursive descent parsing
• Eliminating ambiguity

Simplify parsing

Also builds
parse tree

Today’s Lecture

• Stack automata
• Different classes of languages and

grammars
• Parser generators
• Summary

Today’s Lecture

• Stack automata
• Different classes of languages and

grammars
• Parser generators
• Summary

Stack Automata
A stack automaton (DPDA, Deterministic Push-Down
Automaton) is like a DFA but with an unbounded memory
in the form of a stack Label "x, y/z" on edge:  

Read x, pop y from stack, push z

Read 'a's and 'b's
and push to stack

When reading a 'c',
jump to one of the
accepting states
depending on
whether the top-most
character on the
stack is 'a' or 'b'

Continue to read 'b's and
check that the same number
of 'a's are on the stack

Stack Automata
A stack automaton (DPDA, Deterministic Push-Down
Automaton) is like a DFA but with an unbounded memory
in the form of a stack Label "x, y/z" on edge:  

Read x, pop y from stack, push z

Read 'a's and 'b's
and push to stack

When reading a 'c',
jump to one of the
accepting states
depending on
whether the top-most
character on the
stack is 'a' or 'b'

Continue to read 'b's and
check that the same number
of 'a's are on the stack

Stack automaton accepts input if it is
in an accepting state and the stack is
empty when the input is finished.

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack:  

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 

b pushed

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 

a pushed
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 

a pushed
a
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 
b pushed
a
a
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 
b popped
a
a
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 

a popped
a
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack: 

a popped
b

Example Run of Stack Automaton
Label "x, y/z" on edge:  
Read x, pop y from stack, push z

Input: 
baabcbbb

Stack:  

b

Transition missing: reading 'b'
requires an 'a' on top of the
stack → automaton does not
accept input

Stack Automaton for Strings of Balanced
Parentheses

• A grammar for strings of balanced parentheses:  
Expr → ε | (Expr) Expr

• It is equally simple to construct a DPDA for this language
• The DPDA only requires a single state!

(In addition to the implicit fail-state)

When we see a left parenthesis,
push left parenthesis to the stack

When we see a right parenthesis,
pop a left parenthesis off the stack

From Grammars to Stack Automata
• Can we always convert a grammar to a stack automaton?
• No, that is not always possible!
• Example: the set of palindromes over {a, b}

• Simple to express as a grammar:  
Palin → ε | a | b | a Palin a | b Palin b

• However, there is no DPDA that recognizes this language
• Intuition: when DPDA has read exactly half of the input, it

would have to match the remaining input against those
characters that it has already seen. However, there is no way
for the automaton to know when it has read exactly half of
the input.

It is possible to prove this using a “pumping-lemma” for DPDAs.

Grammars vs Stack Automata
If stack automata are not sufficiently powerful to handle all
context-free grammars, what is their point?
Considerations:

• Stack automata can be applied to a large number of
grammars, for example, even most grammars for
general-purpose programming languages

• The construction of stack automata from grammars
can be automated in most cases

Today’s Lecture

• Stack automata
• Different classes of languages and

grammars
• Parser generators
• Summary

Classes of Languages and Grammars
The grammars that we have used are so-called context-
free grammars.

• (There are so-called context-sensitive grammars
which are more general.)

We have seen two tools for parsing context-free grammars:
• Recursive descent parsing  

• Stack automata  

Neither of them is sufficiently powerful to handle all
context-free grammars, but they are sufficient to handle
most languages that we want to write parsers for.

Classes of Languages and Grammars
The grammars that we have used are so-called context-
free grammars.

• (There are so-called context-sensitive grammars
which are more general.)

We have seen two tools for parsing context-free grammars:
• Recursive descent parsing  

LL grammars → LL languages
• Stack automata  

Deterministic context-free grammars → Deterministic
context-free languages

Neither of them is sufficiently powerful to handle all
context-free grammars, but they are sufficient to handle
most languages that we want to write parsers for.

Perspective

Ex.: valid e-mail addresses
Ex.: balanced parentheses

Ex.: language { anbm | n > m }

Ex.: palindromes over {a, b}

Ex.: { anbncn | n >= 1 }

Ex.: “all Java programs
with an infinite loop”

Today’s Lecture

• Stack automata
• Different classes of languages and

grammars
• Parser generators
• Summary

Parser Generators
• Writing the parser for an entire programming language

by hand requires a lot of effort, and can introduce bugs
• Constructing a parser from a grammar is often a rather

mechanical process → suitable for a computer to do
instead!

• A parser generator generates a lexer and a parser from
the syntactic specification of a language

Language specification Complete
implementation

Lexical specification  
Context-free grammar

Lexer generator

Parser generator

Lexer 
Parser

Examples of Parser Generators
• Lex/Flex and Yacc/Bison, classic Unix tools, generate  

C/C++ code
• Handle most deterministic context-free grammars,

specifically, a subset called LALR grammars
• JFlex and Cup, Java-based versions of Flex and Yacc
• Definite Clause Grammar (DCG) rules in Prolog, built into

the language
• Handle all context-free grammars but use backtracking in

Prolog, which can be slow
• ANTLR (ANother Tool for Language Recognition), generates

LL-parsers in several languages (Java, C#, C++, JavaScript,
Python, Swift, Go)

Grammar for Binary Trees, Again

Terminal symbols:
• Leaf: "leaf"
• Branch: "branch"
• Num: [0-9]+
• LPar, RPar, Comma: parentheses and comma
Example:

<BinTree> ::= Leaf LPar Num RPar 
 | Branch LPar <BinTree> Comma <BinTree> RPar

branch(branch(leaf(17),leaf(42)),leaf(5))

Branch LPar Branch LPar Leaf LPar Num RPar Comma Leaf
LPar Num RPar RPar Comma Leaf LPar Num RPar RPar

Result of lexical analysis:

Binary Trees in Cup
File "Parser.cup":

import java_cup.runtime.*;

terminal BRANCH;
terminal LEAF;
terminal LPAREN;
terminal RPAREN;
terminal COMMA;
terminal Integer NUM;

non terminal ParseTree BinTree;

BinTree ::= LEAF LPAREN NUM:t RPAREN {: RESULT = new LeafNode(t); :}
 | BRANCH LPAREN BinTree:left COMMA BinTree:right RPAREN {:
RESULT = new BranchNode(left, right); :}
 ;

Declare
terminal symbols

Declare
nonterminal symbol

Productions

Run Cup with "java -jar java-cup-11b.jar Parser.cup",
generates "parser.java" and "sym.java"

Lexical analysis for binary trees in JFlex
File "Lexer.lex":
import java.lang.System;
import java_cup.runtime.Symbol;

%%
%cup
%class Lexer

%%

branch { return new Symbol(sym.BRANCH); }
leaf { return new Symbol(sym.LEAF); }
"(" { return new Symbol(sym.LPAREN); }
")" { return new Symbol(sym.RPAREN); }
, { return new Symbol(sym.COMMA); }
[0-9]+ { return new Symbol(sym.NUM, new Integer(yytext())); }
[\t\n] { }

Terminal symbols from "Parser.cup"

Run with "jflex Lexer.lex", generates "Lexer.java"  
Complete example with Main class on course website

Today’s Lecture

• Stack automata
• Different classes of languages and

grammars
• Parser generators
• Summary

Summary
• Formal languages

• Language classes (ex.: regular languages)
• Formal language descriptions (ex. automata, regular expressions,

grammars)
• Regular languages

• Equivalence of regular expressions and DFAs
• Limitations: languages that are not regular

• Context-free languages
• Context-free grammars
• Derivations, parse trees
• Ambiguity
• Stack automata, DPDA

• Lexical analysis
• Recursive descent parsing

Abbreviations
DFA Deterministic Finite Automaton

The simplest kind of automaton, same expressive power
as regular expressions

DPDA Deterministic Push-Down Automaton, Stack
Automaton

Like a DFA but with an unbounded stack as memory
LL Left-to-right, Leftmost-derivation

• LL-parser: read input from left to right and expand
nonterminal symbols from left to right

• LL-grammar: grammar that can be parsed using an
LL-parser

Follow-up Courses
• DD2350 Algorithms, Data Structures and Complexity

More on language hierarchies/complexity
• DD2372 Automata and Languages

More in-depth automata theory
• DD2481 Principles of Programming Languages

Formal semantics, type systems, soundness, verification
• DD2488 Compiler Construction

Write a complete compiler from scratch!
• ID2202 Compilers and Execution Environments

Techniques for implementing programming languages

Good luck in the KS!

