DD1362
Programming Paradigms

Formal Languages and Syntactic Analysis
Lecture 3

Philipp Haller

April 19th, 2021

Review of Lecture 2

. Finite
* Finite automata formally automaton = 5-tuple

* Regular languages

* A class of formal languages that can be
described using regular expressions or
finite automata

* Regular expressions and finite automata
have the same expressive power

o Context-free grammars
« EXxpress strictly more languages than regex

Example: L={arbn|n>=0}

of different sets

lToday's Lecture

_exical analysis

Derivations and parse trees
Recursive descent parsing
Eliminating ambiguity

Lexical Analysis

Lexical Analysis

Lexical analysis: The process of transforming a sequence of
(individual) characters into a sequence of tokens

irrelevant
Goals: for parsing

1. Remove irrelevant parts of input string, for examplg:.

* whitespace (spaces, newlines, tabs, ...)
Input "12+5" should be treated the same as "12 + 5"

e code comments (do not affect executable binaries)

2. Abstract away details from grammar, for example:
Longest match rule:
"hello123 45" should be treated as the token sequence

Ident(hellol23) Num(45) rather than
Ident(hello) Num(123) Num(4) Num(5)

Lexical Analysis

Lexical analysis: The process of transforming a sequence of
(individual) characters into a sequence of tokens

irrelevant
Goals: for parsing

1. Remove irrelevant parts of input string, for examplg:.

* whitespace (spaces, newlines, tabs, ...)
Input "12+5" should be treated the same as "12 + 5"

Rule of thumb: if a part of the language
can be described using a simple regular

lexpression then it is usually better to

lconsider it as a kind of token.

Lexical Analysis of Numbers

Idea: pre-process input string such that numbers are represented
as complete tokens

Example: consider the string "378*232*(582-01)"

Input Strrng s equal to the Character sequence
3)7)8))2)3))())ZJ_)e)‘llJ‘)'

Lexical analysis transforms this sequence into a new sequence

of tokens
Num, l*l, Num, I*l, |(I, Num, l_l, Num, I)I

Some tokens correspond to single characters (like '** or ' ("),
others consist of entire substrings (like Num)

Tokens may also carry token data like the integer value of a
number, for example Num(378)

The generated sequence of tokens is the input to the parser

Lexical Analysis: Example

Consider the following Haskell function:
-- This here is my function

myFunction alpha beta =
5 % x

where

-- compute difference

X = alpha-beta

What tokens do we have?

Keywords: where, let, etc.

Operators and symbols: Plus, Minus, Times, Equal, etc.
Name: name of variable/function/etc.

... and many more

Lexical Analysis: Example

Consider the following Haskell function:
-- This here is my function

myFunction alpha beta =
5 % x

where

-- compute difference

X = alpha-beta

Possible tokenization:
Name, Name, Name, Equal, Int, Times, Name, Where,
Name, Equal, Name, Minus, Name

Derivations and Parse Trees

Derivation |FXpr = Num
EXPr + Expr

A derivation of an input string is a —)
sequence of grammar rules that are :xpr EXpr
applied to produce that string. EXpr * Expr
Example: Let us derive "4*(5+3)", Expr [Expr
l.e., the token sequence Num, ™', (", Num,
o Nom,) (Expn

1. Start with start symbol of grammar

2. Each step: replace exactly one non-
terminal symbol with the right-hand side
of one of its productions

Expr = Expr * Expr = Num * Expr = Num * (Expr) —
Num * (Expr + Expr) = Num * (Num + Expr) —
Num * (Num + Num)

Parse Tree

A parse tree represents a (set of)
derivation(s) and encapsulates the

semantics of an input string

Derivation:

Expr = Expr * Expr =
Num * Expr = Num *
(Expr) —

Num * (Expr + Expr) —
Num * (Num + Expr) —
Num * (Num + Num)

Expr = Num
EXPr + Expr
EXpr - Expr
EXpr * Expr
Parse tree: EXpr /[Expr
Expr (Expr)
NS
Expr ‘*' Expr
/
Num ‘(" Expr)
Expr ‘+' Expr
Nlm Nlm

Parse Tree: Semantics

The parse tree encapsulates the semantics of an

expression/a program.

* Parse tree enables
evaluating an
expression: “execute”
computation to obtain
result value

 Need to know the actual
integers of the Num
tokens — add this as
token data

e Evaluation done using
tree traversal

Parse tree:
EXPF
RN
ET?}- (114) Exr‘
Now (3) (()/E, \‘)’
N
Expr 4 ET{f\"
|
Nur (1) N (1)

Derivations & Trees

Consider the expression 3 + 5 * 4
e Can you find two different derivations?
 What about two different parse trees?

Solution: Expr — Num

£ xps” Coxpr

TN AN

()

Espr % B Expr + B
/1N | | VRN
Expr 4 B Muae (¥) Nuer (2) e

| |
N (3) /\)L (S) MLMLS) N ()

Expr = Num

Derivations Expr + Expr | Expr - Expr

Consider the expression 3 + 5 * 4| | Expr * Expr | Expr / Expr
e Can you find two different deriv: (Expr)

 What about two different parse trees?
Solution:

Both are correct parse trees of the given
expression according to the grammar!

Recursive

Descent Parsing

Recursive Descent Parsing

A method for constructing an efficient parser for a given grammar:

* An input string is parsed according to the productions needed
for its derivation

 When starting to parse a (string derived from a) non-terminal,
look ahead to the next token to select the corresponding
production

e For each non-terminal symbol, create a recursive function
responsible for parsing that non-terminal

e Parse according to a production as follows:
e For each terminal: check that it matches the next token

* For each non-terminal symbol: call the function
corresponding to the non-terminal symbol

Grammar for Binary Trees

<BinTree> ::= Leaf LPar Num RPar
| Branch LPar <BinTree> Comma <BinTree> RPar

Terminal symbols:
o Leaf: "leaf"

 Branch: "branch"
e Num: [0-9]+
e [Par, RPar, Comma: parentheses and comma

Example:
branch(branch(leat(17),1leaf(42)),1leaf(5))

Result of lexical analysis:

Branch LPar Branch LPar Leaf LPar Num RPar Comma Leaf
LPar Num RPar RPar Comma Leaf LPar Num RPar RPar

<BinTree>

| Branch LPar <BinTree> Comma <BinTree> RPar

::= Leaf LPar Num RPar

Recursive function BinTree for parsing <BinTrees:

ParseTree BinTree() throws SyntaxError {
.peekToken();

Token t = lexer
if (t.getType()

1} else {
throw new Syn

lexer.nextToken();

JComplete Java implementation of
{lexical analysis and recursive descent
{parsing for binary trees available on

{course website

expec okenType.RPar);
return new BranchNode(left, right);

== TokenType.Leaf) { look ahead

Token expect(TokenType t) throws SyntaxError {
Token next = lexer.nextToken();
if (next.getType() != t) throw new SyntaxError();
return next; }

—liminating Ambiguity

Ambiguous Expression Grammar

expr ::=intLiteral | ident
| expr + expr | expr / expr

foo + 42 / bar + arg

Each node Iin parse tree is given by
one grammar alternative.

Show that the input above has two
parse trees!

(1) Layer the grammar by priorities

expr ::= ident | expr - expr | expr " expr | (expr)

U

expr ::= term (- term)* lower priority binds weaker,
term ::= factor (* factor)* SO itgoes outside
factor ::=id | (expr)

(2) Building trees: right-associative "/

RIGHT-associative operator — using recursion
(or loop and then reverse a list)
y*z =2 x"(y" 2z
Exp(Var("x"), Exp(Var("y"), Var("z")))

N

X

Expr term() {
Expr e = factor();
if (lexer.token == ExpToken) {
lexer.next();
return new Exp(e, term());
} else
return e;

(3) Building trees: left-associative -

LEFT-associative operator
X-Yy-Z = (X-Yy)-zZ
Minus(Minus(Var("x"), Var(“y")), Var("z"))

Expr expr() {
Expr e =term();

while (lexer.token == MinusToken) {
lexer.next();

e = new Minus(e, term());

¥

return e;

¥

(3) Building trees: left-associative -

LEFT-associative operator
X-y-zZ = (X-y)-z
Minus(Minus(Var("x"), Var(“y")), Var("z"))

expr e Complete Java implementation of
Exprilexical analysis and recursive descent
whil
parsing for arithmetic expressions

le
- 1available on course website

¥

return e;

¥

Grammars & Ambiguity: Summary

It we can find a string for which there are two different parse
trees, then the grammar is ambiguous

In general, it is difficult to say whether a grammar is
ambiguous, however

Deciding whether a grammar is ambiguous is an
undecidable problem

e There is no algorithm which can decide whether a
grammar is ambiguous

How to make grammars unambiguous:
* Ensure that there is always only one parse tree

« Construct the correct abstract syntax tree (associativity
etc.)

Manual Construction of Parsers

e [ypically one applies previous
transformations to get a nice grammar

* Then, we write recursive descent parser
as set of mutually recursive procedures
that check if input is well formed

 Then, enhance such procedures to
construct trees, paying attention to the
associativity and priority of operators

Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList
| - term termList
| €
term ::= factor factorList
factorList ::= * factor factorList
| / factor factorList
| €
factor ::= name | (expr)
name ::= ident

def expr = { term; termList }
def termList =
if (token == PLUS) {

skip(PLUS); term; termList
} else if (token MINUS)
skip(MINUS); term; termList

}
def term = { factor; factorList }

def factor =
if (token IDENT) name
else if (token LPAR) {
skip(LPAR); expr; skip(RPAR)
} else

error("expected ident or (")

Recursive

Descent: Summary

One of the most widely-used methods for parsing in
compilers of real-world programming languages

« GCC C/C++ compiler, Java reference compiler, Scala
reference compiler, ...

Efficient (linear) in the size of the token sequence

Straight-forward to implement manually based on the

grammar

e There are also parser generators that generate the
source code of recursive descent parsers

Close correspondence between grammar and code
« Common practice: quote grammar in code comments

