
DD1362 
Programming Paradigms

Philipp Haller

April 19th, 2021

Formal Languages and Syntactic Analysis 
Lecture 3



Review of Lecture 2
• Finite automata formally 
• Regular languages 

• A class of formal languages that can be 
described using regular expressions or 
finite automata 

• Regular expressions and finite automata 
have the same expressive power 

• Context-free grammars 
• Express strictly more languages than regex

Finite 
automaton = 5-tuple 

of different sets

Example: L = { anbn | n >= 0 }



Today’s Lecture

• Lexical analysis 
• Derivations and parse trees 
• Recursive descent parsing 
• Eliminating ambiguity



Lexical Analysis



Lexical Analysis
Lexical analysis: The process of transforming a sequence of 
(individual) characters into a sequence of tokens 
Goals: 
1. Remove irrelevant parts of input string, for example: 

• whitespace (spaces, newlines, tabs, …) 
Input "12+5" should be treated the same as "12 + 5" 

• code comments (do not affect executable binaries) 
2. Abstract away details from grammar, for example: 

Longest match rule: 
"hello123 45" should be treated as the token sequence 
Ident(hello123) Num(45) rather than  
Ident(hello) Num(123) Num(4) Num(5)

irrelevant 
for parsing



Lexical Analysis
Lexical analysis: The process of transforming a sequence of 
(individual) characters into a sequence of tokens 
Goals: 
1. Remove irrelevant parts of input string, for example: 

• whitespace (spaces, newlines, tabs, …) 
Input "12+5" should be treated the same as "12 + 5" 

• code comments (do not affect executable binaries) 
2. Abstract away details from grammar, for example: 

Longest match rule: 
"hello123 45" should be treated as the token sequence 
Ident(hello123) Num(45) rather than  
Ident(hello) Num(123) Num(4) Num(5)

Rule of thumb: if a part of the language 
can be described using a simple regular 
expression then it is usually better to 
consider it as a kind of token.

irrelevant 
for parsing



Lexical Analysis of Numbers
Idea: pre-process input string such that numbers are represented 
as complete tokens 
Example: consider the string "378*232*(582-01)" 
• Input string is equal to the character sequence 

`3',`7',`8',`*',`2',`3',`2',`*',`(',`5',`8',`2',`-',`0',`1',`)' 
• Lexical analysis transforms this sequence into a new sequence 

of tokens  
Num, '*', Num, '*', '(', Num, '-', Num, ')' 

• Some tokens correspond to single characters (like '*' or '('), 
others consist of entire substrings (like Num) 

• Tokens may also carry token data like the integer value of a 
number, for example Num(378) 

• The generated sequence of tokens is the input to the parser



Lexical Analysis: Example
Consider the following Haskell function: 
-- This here is my function 

myFunction alpha beta = 

5 * x 

where 

-- compute difference 

x = alpha-beta

What tokens do we have? 
Keywords: where, let, etc. 
Operators and symbols: Plus, Minus, Times, Equal, etc. 
Name: name of variable/function/etc. 
... and many more



Lexical Analysis: Example
Consider the following Haskell function: 
-- This here is my function 

myFunction alpha beta = 

5 * x 

where 

-- compute difference 

x = alpha-beta

Possible tokenization: 
Name, Name, Name, Equal, Int, Times, Name, Where, 
Name, Equal, Name, Minus, Name



Derivations and Parse Trees



Derivation
A derivation of an input string is a 
sequence of grammar rules that are 
applied to produce that string. 
Example: Let us derive "4*(5+3)",  
i.e., the token sequence Num, '*', '(', Num, 
'+', Num, ')' 
1. Start with start symbol of grammar 
2. Each step: replace exactly one non-

terminal symbol with the right-hand side 
of one of its productions

Expr → Num 
 | Expr + Expr 
 | Expr - Expr 
 | Expr * Expr 
 | Expr / Expr 
 | (Expr)

Expr → Expr * Expr → Num * Expr → Num * (Expr) → 
Num * (Expr + Expr) → Num * (Num + Expr) → 
Num * (Num + Num)



Parse Tree
A parse tree represents a (set of) 
derivation(s) and encapsulates the 
semantics of an input string
Derivation:

Expr → Expr * Expr → 
Num * Expr → Num * 
(Expr) → 
Num * (Expr + Expr) → 
Num * (Num + Expr) → 
Num * (Num + Num)

Parse tree:

Expr → Expr * Expr → 
Num * Expr → Num * 
(Expr) → 
Num * (Expr + Expr) → 
Num * (Num + Expr) → 
Num * (Num + Num)

Expr → Num 
 | Expr + Expr 
 | Expr - Expr 
 | Expr * Expr 
 | Expr / Expr 
 | (Expr)



Parse Tree: Semantics
The parse tree encapsulates the semantics of an 
expression/a program.

Parse tree:

Expr → Expr * Expr → 
Num * Expr → Num * 
(Expr) → 
Num * (Expr + Expr) → 
Num * (Num + Expr) → 
Num * (Num + Num)

• Parse tree enables 
evaluating an 
expression: “execute” 
computation to obtain 
result value 

• Need to know the actual 
integers of the Num 
tokens → add this as 
token data 

• Evaluation done using 
tree traversal



Derivations & Trees
Consider the expression 3 + 5 * 4 
• Can you find two different derivations? 
• What about two different parse trees? 
Solution: Expr → Num 

 | Expr + Expr | Expr - Expr 
 | Expr * Expr | Expr / Expr 
 | (Expr)



Derivations & Trees
Consider the expression 3 + 5 * 4 
• Can you find two different derivations? 
• What about two different parse trees? 
Solution:

Expr → Num 
 | Expr + Expr | Expr - Expr 
 | Expr * Expr | Expr / Expr 
 | (Expr)

Both are correct parse trees of the given 
expression according to the grammar!

This means there are two meanings! 

The grammar is ambiguous.



Recursive Descent Parsing



Recursive Descent Parsing
A method for constructing an efficient parser for a given grammar: 
• An input string is parsed according to the productions needed 

for its derivation 
• When starting to parse a (string derived from a) non-terminal, 

look ahead to the next token to select the corresponding 
production 

• For each non-terminal symbol, create a recursive function 
responsible for parsing that non-terminal 

• Parse according to a production as follows: 
• For each terminal: check that it matches the next token 
• For each non-terminal symbol: call the function 

corresponding to the non-terminal symbol



Grammar for Binary Trees

Terminal symbols:
• Leaf: "leaf" 
• Branch: "branch" 
• Num: [0-9]+ 
• LPar, RPar, Comma: parentheses and comma 
Example:

<BinTree> ::= Leaf LPar Num RPar 
  | Branch LPar <BinTree> Comma <BinTree> RPar

branch(branch(leaf(17),leaf(42)),leaf(5))

Branch LPar Branch LPar Leaf LPar Num RPar Comma Leaf 
LPar Num RPar RPar Comma Leaf LPar Num RPar RPar

Result of lexical analysis:



Grammar for Binary Trees
Recursive function BinTree for parsing <BinTree>:

<BinTree> ::= Leaf LPar Num RPar 
  | Branch LPar <BinTree> Comma <BinTree> RPar

ParseTree BinTree() throws SyntaxError { 
  Token t = lexer.peekToken(); 
  if (t.getType() == TokenType.Leaf) { 
    lexer.nextToken(); 
    expect(TokenType.LPar); 
    Token param = expect(TokenType.Num); 
    expect(TokenType.RPar); 
    return new LeafNode((Integer) param.getData()); 
  } else if (t.getType() == TokenType.Branch) { 
    lexer.nextToken(); 
    expect(TokenType.LPar); 
    ParseTree left = BinTree(); 
    expect(TokenType.Comma); 
    ParseTree right = BinTree(); 
    expect(TokenType.RPar); 
    return new BranchNode(left, right); 
  } else { 
    throw new SyntaxError(); 
  } 
}

look ahead

Token expect(TokenType t) throws SyntaxError { 
  Token next = lexer.nextToken(); 
  if (next.getType() != t) throw new SyntaxError(); 
  return next; }

recursive call to 
parse BinTree

Complete Java implementation of 
lexical analysis and recursive descent 
parsing for binary trees available on 
course website



Eliminating Ambiguity



Ambiguous Expression Grammar
expr ::= intLiteral | ident 
          | expr + expr | expr / expr 

foo + 42 / bar + arg

Show that the input above has two 
parse trees!

Each node in parse tree is given by  
one grammar alternative.



(1) Layer the grammar by priorities

expr ::= term (- term)* 
term ::= factor (^ factor)* 
factor ::= id | (expr)

lower priority binds weaker,  
so it goes outside

expr ::= ident | expr - expr | expr ^ expr  | (expr)



(2) Building trees: right-associative "^"

RIGHT-associative operator – using recursion  
   (or loop and then reverse a list) 
x ^ y ^ z    ➔  x ^ (y ^ z) 
           Exp(Var("x"), Exp(Var("y"), Var("z")))

Expr term() { 
  Expr e = factor(); 
  if (lexer.token == ExpToken) { 
    lexer.next(); 
    return new Exp(e, term()); 
  } else 
    return e; 
}



(3) Building trees: left-associative "-"

LEFT-associative operator 
x – y – z    ➔ (x – y) – z  
  Minus(Minus(Var("x"), Var("y")), Var("z"))

Expr expr() { 
  Expr e =  
  while (lexer.token == MinusToken) { 
    lexer.next(); 
        
  } 
  return e; 
}

e = new Minus(e, term());

term();



(3) Building trees: left-associative "-"

LEFT-associative operator 
x – y – z    ➔ (x – y) – z  
  Minus(Minus(Var("x"), Var("y")), Var("z"))

Expr expr() { 
  Expr e =  
  while (lexer.token == MinusToken) { 
    lexer.next(); 
        
  } 
  return e; 
}

e = new Minus(e, term());

term();
Complete Java implementation of 
lexical analysis and recursive descent 
parsing for arithmetic expressions 
available on course website



Grammars & Ambiguity: Summary
• If we can find a string for which there are two different parse 

trees, then the grammar is ambiguous 
• In general, it is difficult to say whether a grammar is 

ambiguous, however 
• Deciding whether a grammar is ambiguous is an 

undecidable problem 
• There is no algorithm which can decide whether a 

grammar is ambiguous 
• How to make grammars unambiguous: 

• Ensure that there is always only one parse tree 
• Construct the correct abstract syntax tree (associativity 

etc.)



Manual Construction of Parsers

• Typically one applies previous 
transformations to get a nice grammar 

• Then, we write recursive descent parser 
as set of mutually recursive procedures 
that check if input is well formed 

• Then, enhance such procedures to 
construct trees, paying attention to the 
associativity and priority of operators



Grammar vs Recursive Descent Parser
expr ::= term termList 
termList ::= + term termList  
       |  - term termList  
      | ε 
term ::= factor factorList  
factorList ::= * factor factorList  
                  | / factor factorList  
                  | ε 
factor ::= name | ( expr )  
name ::= ident

def expr = { term; termList } 
def termList = 
  if (token == PLUS) { 
    skip(PLUS); term; termList 
  } else if (token == MINUS) 
    skip(MINUS); term; termList 
  } 
def term = { factor; factorList } 
... 
def factor = 
  if (token == IDENT) name 
  else if (token == LPAR) { 
    skip(LPAR); expr; skip(RPAR) 
  } else 
    error("expected ident or (")



Recursive Descent: Summary
• One of the most widely-used methods for parsing in 

compilers of real-world programming languages 
• GCC C/C++ compiler, Java reference compiler, Scala 

reference compiler, … 
• Efficient (linear) in the size of the token sequence 
• Straight-forward to implement manually based on the 

grammar 
• There are also parser generators that generate the 

source code of recursive descent parsers 
• Close correspondence between grammar and code 

• Common practice: quote grammar in code comments


