
DD1362 
Programming Paradigms

Philipp Haller

April 12th, 2021

Formal Languages and Syntactic Analysis 
Lecture 2



Review of Lecture 1
• Formal languages 

• “Language = subset of Σ*” 
• Regular expressions 

• Example: letter (letter | digit)* 
• Finite automata 

• Example:

Σ* = set of all 
words over 
alphabet Σ



Today’s Lecture

• Finite automata formally 
• Regular languages 
• Context-free grammars



Finite Automata Formally



Finite Automata Formally

• Σ - alphabet 
• Q - states (nodes in the graph) 

• q0 - initial state (with '>' sign in drawing) 

• δ - transitions (labeled edges in the graph) 
• F - final states (double circles)



• Deterministic: δ is a function

Kinds of Finite State Automata

• Otherwise: non-deterministic

DFA = 
Deterministic Finite 

Automaton



Regular Expressions and Automata

Theorem:
If L is a set of words, then it is a value of a 
regular expression if and only if it is the set 
of words accepted by some finite 
automaton.



Using DFAs to Recognize Languages

digit digit* . digit digit*

DFA for recognizing valid floating-point 
numbers?

Corresponding regular expression?



Regular Languages



Regular Languages

• They “describe the same class of languages” 
• Languages that can be described using either a 

regular expression or a DFA are called regular 
languages 

• Examples of regular languages: 
• Names of labs in DD1362 
• All binary strings (“”, “0”, “1”, “00”, “01”, …) 
• Valid identifiers in a programming language

Regular expressions and finite automata 
have the same expressive power



Properties of Regular Languages
Suppose A and B are regular languages over Σ. 
Then, the following properties hold: 
• A = Σ* - A (complement of A) is regular  

Proof idea: swap accepting and non-accepting 
states in DFA for A 

• A ∪ B is regular  
Proof idea: describe using RA | RB 

• A ⋂ B is regular 
Proof idea: use A ⋂ B = (A ∪ B) 

• A - B is regular 
Proof idea: use A - B = A ⋂ B



Limitations of Regular Expressions
• Are there languages that cannot be described using 

a regular expression (or a DFA)? 
• If such languages exist, how can we prove that (no 

matter how clever we are) we could never find a 
regular expression describing that language? 

• Example language: L = { anbn | n >= 0 } 
Intuition: (not a proof!)  

• After reading k ‘a’s and then only ‘b’s, the DFA 
needs to remember that only k ‘b’s may be read 

• A DFA can only remember a fixed number of 
states, however, in language L the number n is 
arbitrarily large



Automaton that Claims to Recognize 
L = { anbn  | n >= 0 }

• Assume there is a DFA recognizing L 
• Let the DFA have K states, |Q| = K 
• Feed it a, aa, aaa, …. Let qi be state after reading ai 
• Consider the following sequence: 

q0 , q1 , q2 , ... , qK 
• This sequence has length K+1 → a state must repeat: there 

is an index i such that 
qi = qi+p for some p > 0 

• Then the automaton should accept ai+p bi+p 
• But then it must also accept ai bi+p 
• because it is in the same state after reading ai as after ai+p 
• Thus, it does not accept the given language — contradiction 
• Therefore, no such DFA exists. QED



Context-free Grammars



Grammars
• To describe languages that cannot be 

described using regular expressions (or 
DFAs) more powerful formalisms are 
needed 

• Grammars, more precisely, context-free 
grammars are such a formalism 

• Let us revisit language L which cannot be 
expressed using a DFA (or regular 
expression): L = { anbn | n >= 0 } 

• How could we describe L mathematically?



Grammar for Language L
• We can define L = { anbn | n >= 0 } 

mathematically using induction: 
• Base case i = 0: 

The empty word ε = a0b0 is a word in L 
• Inductive case i+1 > 0: 

Let word w = aibi for some i >= 0 (w is in L) 
Then, awb is a word in L 

• Grammars enable describing such 
languages using recursion



Grammar for Language L
• Grammar for language L:  

W → ε | aWb 
• The above grammar can be understood as 

follows: 
“A valid word W is either the empty word ε 
or an ‘a’ followed by a valid word followed 
by a ‘b’.”



Elements of a Grammar
Grammar G for language L: 
W → ε | aWb 
• Terminal symbols are elements of the underlying alphabet 

• Grammar G: terminal symbols a, b in alphabet Σ = {a, b} 
• Non-terminal symbols stand for parts of a word 

• Grammar G: non-terminal symbol W 
• Productions are rules for how non-terminal symbols are 

composed of terminal symbols and other non-terminal 
symbols 

• Two productions in grammar G (abbreviated using ‘|’):  
W → ε 
W → aWb



Derivations
S → B | AA                     Start symbol S 
A → cA | dB  
B → aSa | ε 

Q: How to find strings that are in the language? 
A: Apply the production rules to generate valid strings starting 
from the grammar's start symbol 
• For example, two derivations: 

S → B → aSa → aBa → aa 
S → B → aSa → aAAa → acAAa → acdBAa → acdAa → 
acddBa → acdda 

• Normally, however, we are interested in the converse: 
Given a program, does it correspond to the grammar of [Java/
Scala/Go/...]?

Each step: 
replace exactly one 

non-terminal

This process is 
called derivation



Notation for Grammars
Two common notations for grammars:

Mathematical 
notation:
S → B | AA 
A → cA | dB 
B → aSa | ε

Backus-Naur-Form 
(BNF):
<S> ::= <B> | <A><A> 
<A> ::= "c" <A> 
      | "d" <B> 
<B> ::= "a" <S> "a"  
      | ""

Different 
syntax for terminal 
and non-terminal 

symbols!



Grammars for Programming Languages
• Context-free grammars are powerful enough to 

describe the syntax of general-purpose 
programming languages (Java, C#, Scala, …) 

• Syntax specifications of programming languages 
often make use of context-free grammars 

• Specs may introduce specific notations 
(example: Java Language Specification) 

• Such grammars are the primary basis for the 
implementation of parsers for the specified 
languages



Example: Grammar for Expressions in the 
Scala language (Extract)

Expr        ::=  (Bindings | [‘implicit’] id | ‘_’) ‘=>’ Expr 
              |  Expr1 
Expr1       ::=  ‘if’ ‘(’ Expr ‘)’ {nl} Expr [[semi] ‘else’ Expr] 
              |  ‘while’ ‘(’ Expr ‘)’ {nl} Expr 
              |  ‘try’ Expr [‘catch’ Expr] [‘finally’ Expr] 
              |  ‘do’ Expr [semi] ‘while’ ‘(’ Expr ‘)’ 
              |  ‘for’ (‘(’ Enumers ‘)’ | ‘{’ Enumers ‘}’) {nl} [‘yield’] Expr 
              |  ‘throw’ Expr 
              |  ‘return’ [Expr] 
              |  [SimpleExpr ‘.’] id ‘=’ Expr 
              |  SimpleExpr1 ArgumentExprs ‘=’ Expr 
              |  PostfixExpr 
              |  PostfixExpr Ascription 
              |  PostfixExpr ‘match’ ‘{’ CaseClauses ‘}’ 
PostfixExpr ::=  InfixExpr [id [nl]] 
InfixExpr   ::=  PrefixExpr 
              |  InfixExpr id [nl] InfixExpr 
PrefixExpr  ::=  [‘-’ | ‘+’ | ‘~’ | ‘!’] SimpleExpr

Extended 
Backus-Naur Form 

(EBNF)



Example: Grammar for Lists in Haskell
Let us create a grammar that describes the syntax 
for lists in Haskell, for example: 
[1, 2, 3]    1:[2,3]    []    1:2:3:[] 
Inductive definition: 
• Base case 1: 

The empty list [] is a Haskell list 
• Base case 2: 

If L is a comma-separated sequence of list 
elements, then [L] is a Haskell list 

• Inductive case: 
If H is a list element and T is a list, then H:T is a list



Example: Grammar for Lists in Haskell
Inductive definition: 
• Base case 1: 

The empty list [] is a Haskell list 
• Base case 2: 

If L is a comma-separated sequence of list elements, 
then [L] is a Haskell list 

• Inductive case: 
If H is a list element and T is a list, then H:T is a list 

The three cases expressed in BNF: 
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List>



Example: Grammar for Lists in Haskell
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

Non-terminal <List> defined in terms of two 
additional non-terminals <ListElems> and <ListElem> 
Inductive definition of <ListElems>: 
• Base case: if E is a list element, then E is also a 

sequence of list elements 
• Inductive case: if E is a list element and L is a 

sequence of list elements, then E, L is a sequence 
of list elements

<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 



Example: Grammar for Lists in Haskell
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

Non-terminal <List> defined in terms of two 
additional non-terminals <ListElems> and <ListElem> 
Inductive definition of <ListElems>: 
• Base case: if E is a list element, then E is also a 

sequence of list elements 
• Inductive case: if E is a list element and L is a 

sequence of list elements, then E, L is a sequence 
of list elements

<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

<ListElems> ::= <ListElem> 
              | <ListElem> "," <ListElems>



Example: Grammar for Lists in Haskell
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

Non-terminal <List> defined in terms of two 
additional non-terminals <ListElems> and 
<ListElem> 
How to define <ListElem>? 
• In real Haskell, list elements can be arbitrary 

Haskell expressions 
• To keep our example simple enough: limit lists to 

list elements 0 and 1

<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

<ListElems> ::= <ListElem> 
              | <ListElem> "," <ListElems> 



Example: Grammar for Lists in Haskell
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

Non-terminal <List> defined in terms of two 
additional non-terminals <ListElems> and 
<ListElem> 
How to define <ListElem>? 
• In real Haskell, list elements can be arbitrary 

Haskell expressions 
• To keep our example simple enough: limit lists to 

list elements 0 and 1

<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

<ListElems> ::= <ListElem> 
              | <ListElem> "," <ListElems> 
<ListElem> ::= "0" | "1"



Example: Grammar for Lists in Haskell
<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

Non-terminal <List> defined in terms of two 
additional non-terminals <ListElems> and 
<ListElem> 

Complete grammar for Haskell lists where 
each list element is either 0 or 1

<List> ::= "[]" 
         | "[" <ListElems> "]" 
         | <ListElem> ":" <List> 

<ListElems> ::= <ListElem> 
              | <ListElem> "," <ListElems> 
<ListElem> ::= "0" | "1"


