DD1362 Programming Paradigms

Formal Languages and Syntactic Analysis Lecture 2

Philipp Haller

April 12th, 2021

Review of Lecture 1

- Formal languages
- "Language $=$ subset of $\Sigma^{* "}$
- Regular expressions
- Example: letter (letter | digit)*
- Finite automata
- Example:

Today's Lecture

- Finite automata formally
- Regular languages
- Context-free grammars

Finite Automata Formally

Finite Automata Formally

i.e.

$$
A=\left(\Sigma, Q, q_{0}, \delta, F\right)
$$

$$
\delta \subseteq Q \times \Sigma \times Q
$$

- Σ-alphabet

$$
\left(q_{1}, a, q_{2}\right) \in \delta
$$

- Q - states (nodes in the graph)

$$
\text { (91) } \xrightarrow{a} \text { (92 }
$$

- q_{0} - initial state (with '>' sign in drawing)
- δ - transitions (labeled edges in the graph)
- F - final states (double circles)

Kinds of Finite State Automata

Regular Expressions and Automata

Theorem:

If L is a set of words, then it is a value of a regular expression if and only if it is the set of words accepted by some finite automaton.

Using DFAs to Recognize Languages

DFA for recognizing valid floating-point numbers?

Corresponding regular expression? digit digit* . digit digit*

Regular Languages

Regular Languages

Regular expressions and finite automata have the same expressive power

- They "describe the same class of languages"
- Languages that can be described using either a regular expression or a DFA are called regular languages
- Examples of regular languages:
- Names of labs in DD1362
- All binary strings ("", "0", "1", "00", "01", ...)
- Valid identifiers in a programming language

Properties of Regular Languages

Suppose A and B are regular languages over Σ.
Then, the following properties hold:

- $\bar{A}=\Sigma^{*}-A$ (complement of A) is regular

Proof idea: swap accepting and non-accepting states in DFA for A

- $A \cup B$ is regular

Proof idea: describe using $R_{A} \mid R_{B}$

- $A \cap B$ is regular

Proof idea: use $A \cap B=\overline{(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})}$

- A - B is regular

Proof idea: use $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \overline{\mathrm{B}}$

Limitations of Regular Expressions

- Are there languages that cannot be described using a regular expression (or a DFA)?
- If such languages exist, how can we prove that (no matter how clever we are) we could never find a regular expression describing that language?
- Example language: $L=\left\{a^{n} b^{n} \mid n>=0\right\}$ Intuition: (not a proof!)
- After reading k 'a's and then only 'b's, the DFA needs to remember that only k 'b's may be read
- A DFA can only remember a fixed number of states, however, in language L the number n is arbitrarily large

Automaton that Claims to Recognize $L=\left\{a^{n} b^{n} \mid n>=0\right\}$

- Assume there is a DFA recognizing L
- Let the DFA have K states, $|\mathrm{Q}|=\mathrm{K}$
- Feed it a, aa, aaa, Let qi be state after reading ai
- Consider the following sequence: $\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{k}$
- This sequence has length $K+1 \rightarrow$ a state must repeat: there is an index i such that
$q_{i}=q_{i+p}$ for some $p>0$
- Then the automaton should accept ai+p bi+p
- But then it must also accept ai bi+p
- because it is in the same state after reading ai as after ai+p
- Thus, it does not accept the given language - contradiction
- Therefore, no such DFA exists. QED

Context-free Grammars

Grammars

- To describe languages that cannot be described using regular expressions (or DFAs) more powerful formalisms are needed
- Grammars, more precisely, context-free grammars are such a formalism
- Let us revisit language L which cannot be expressed using a DFA (or regular expression): $L=\left\{a^{n} b^{n} \mid n>=0\right\}$
- How could we describe L mathematically?

Grammar for Language L

- We can define $L=\left\{a^{n} b^{n} \mid n>=0\right\}$ mathematically using induction:
- Base case i=0:

The empty word $\varepsilon=\mathrm{a}^{0} \mathrm{~b}^{0}$ is a word in L

- Inductive case i+1>0:

Let word w = aibi for some i >=0 (w is in L) Then, awb is a word in L

- Grammars enable describing such languages using recursion

Grammar for Language L

- Grammar for language L:
$W \rightarrow \varepsilon \mid a W b$
- The above grammar can be understood as follows:
"A valid word W is either the empty word ε or an 'a' followed by a valid word followed by a 'b'."

Elements of a Grammar

Grammar G for language L :
$\mathrm{W} \rightarrow \varepsilon \mid \mathrm{aWb}$

- Terminal symbols are elements of the underlying alphabet
- Grammar G: terminal symbols a, b in alphabet $\Sigma=\{a, b\}$
- Non-terminal symbols stand for parts of a word
- Grammar G: non-terminal symbol W
- Productions are rules for how non-terminal symbols are composed of terminal symbols and other non-terminal symbols
- Two productions in grammar G (abbreviated using '|'): W $\rightarrow \varepsilon$ $\mathrm{W} \rightarrow \mathrm{aWb}$

Derivations

$S \rightarrow B \mid A A \quad$ Start symbol S
$A \rightarrow c A \mid d B$
$\mathrm{B} \rightarrow \mathrm{aSa} \mid \varepsilon$

Q: How to find strings that are in the language?
A: Apply the production rules to generate valid strings starting from the grammar's start symbol

- For example, two derivations:
$\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{aSa} \rightarrow \mathrm{aBa} \rightarrow \mathrm{aa}$
$\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{aSa} \rightarrow \mathrm{aAAa} \rightarrow$ acAAa \rightarrow acdBAa \rightarrow acdAa \rightarrow acddBa \rightarrow acdda
- Normally, however, we are interested in the converse:

Given a program, does it correspond to the grammar of [Java/ Scala/Go/...]?

Notation for Grammars

Two common notations for grammars：

Mathematical notation：

$S \rightarrow B \mid A A$
$\mathrm{A} \rightarrow \mathrm{cA} \mid \mathrm{dB}$
$B \rightarrow \mathrm{aSa} \mid \varepsilon$

Backus－Naur－Form （BNF）：
〈S〉 ：：＝＜B＞｜〈A＞＜A＞
〈A〉 ：：＝＂c＂〈A〉
｜＂d＂＜B＞
〈B〉 ：：＝＂a＂＜S＞＂a＂

Different
syntax for terminal and non－terminal

Grammars for Programming Languages

- Context-free grammars are powerful enough to describe the syntax of general-purpose programming languages (Java, C\#, Scala, ...)
- Syntax specifications of programming languages often make use of context-free grammars
- Specs may introduce specific notations (example: Java Language Specification)
- Such grammars are the primary basis for the implementation of parsers for the specified languages

Example: Grammar for Expressions in the Scala language (Extract)

Example: Grammar for Lists in Haskell

Let us create a grammar that describes the syntax for lists in Haskell, for example:
$[1,2,3] \quad 1:[2,3] \quad[] \quad 1: 2: 3:[]$
Inductive definition:

- Base case 1:

The empty list [] is a Haskell list

- Base case 2:

If L is a comma-separated sequence of list elements, then [L] is a Haskell list

- Inductive case:

If H is a list element and T is a list, then $\mathrm{H}: \mathrm{T}$ is a list

Example: Grammar for Lists in Haskell

Inductive definition:

- Base case 1:

The empty list [] is a Haskell list

- Base case 2:

If L is a comma-separated sequence of list elements, then [L] is a Haskell list

- Inductive case:

If H is a list element and T is a list, then $\mathrm{H}: \mathrm{T}$ is a list
The three cases expressed in BNF:
<List> ::= "[]"
"[" <ListElems> "]"
<ListElem> ":" <List>

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "["<ListElems> "]"

Non-terminal <List> defined in terms of two additional non-terminals <ListElems> and <ListElem> Inductive definition of <ListElems>:

- Base case: if E is a list element, then E is also a sequence of list elements
- Inductive case: if E is a list element and L is a sequence of list elements, then E, L is a sequence of list elements

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "["<ListElems> "]"
<ListElems> ::= <ListElem>
| <ListElem> "," <ListElems>
Inductive definition of <ListElems>:

- Base case: if E is a list element, then E is also a sequence of list elements
- Inductive case: if E is a list element and L is a sequence of list elements, then E , L is a sequence of list elements

Example: Grammar for Lists in Haskell

<List> ::= "[]"

$$
\begin{aligned}
& \text { "[" <ListElems> "]" } \\
& \text { <ListElem> ":" <List> }
\end{aligned}
$$

<ListElems> ::= <ListElem>
| <ListElem> "," <ListElems>

How to define <ListElem>?

- In real Haskell, list elements can be arbitrary Haskell expressions
- To keep our example simple enough: limit lists to list elements 0 and 1

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "[" <ListElems> "]"
<ListElems> ::= <ListElem>
| <ListElem> "," <ListElems>
<ListElem> ::= "0" | "1"
How to define <ListElem>?

- In real Haskell, list elements can be arbitrary Haskell expressions
- To keep our example simple enough: limit lists to list elements 0 and 1

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "[" <ListElems> "]"
<ListElem> ":" <List>
<ListElems> ::= <ListElem> | <ListElem> "," <ListElems>
<ListElem> ::= "0" | "1"

Complete grammar for Haskell lists where each list element is either 0 or 1

