DD1362
Programming Paradigms

Formal Languages and Syntactic Analysis
Lecture 2

Philipp Haller

April 12th, 2021

Review of Lecture 1

e Formal languages >* = set of all
(«) words over
* “Language = subset of 2~ e

 Regular expressions
« Example: letter (letter | digit)”
e Finite automata
« Example:

loday's Lecture

* Finite automata formally
 Regular languages
e Context-free grammars

Finite Automata Formally

Finite Automata Formally

letter

letter O digit
O——®

NG

Azﬁf,Q)qo)é’)F) S c QxZxQ
« 3 - alphabet (qy,a, Qz) 65’
Q - states (nodes in the graph) a

q, - initial state (with '>" sign in drawing)
d - transitions (labeled edges in the graph)
F - final states (double circles)

~° oo e N ==

m ~AFS
- NAP
g

no Q

Nnw >

N...

Kinds of Finite State Automata

l
Lette‘; A 2 i
dig @ q 2 3
letter g% Z
? 2

Deterministic Finite
Automaton

e Otherwise: non-deterministic

Regular Expressions and Automata

Theorem:

It L is a set of words, then it is a value of a
regular expression if and only if it is the set
of words accepted by some finite
automaton.

Using DFAs to Recognize Languages

DFA for recognizing valid floating-point
numbers?

dig) ik A\(B\‘E
) Al l‘\:
>O dq> Cg)-—-e 9>©
1_’ S q_ . q 8 2.3S

Corresponding regular expression?
digit digit* . digit digit”

Regular Languages

Regular Languages

Regular expressions and finite automata
have the same expressive power

e They “describe the same class of languages”

e Languages that can be described using either a
regular expression or a DFA are called regular
languages

 Examples of regular languages:
 Names of labs in DD1362
e All binary strings (“7, “0”, “17, “00”, “017, ...)
 Valid identifiers in a programming language

Properties of Regular Languages

Suppose A and B are regular languages over 2.
Then, the following properties hold:

e A =3*-A (complement of A) is regular
Proof idea: swap accepting and non-accepting
states in DFA for A

« AU B isregular

Proof idea: describe using Ra | Rs
« AnBisregular

Proof idea: use An B =(AUB)

« A-Bisregular .
Proof idea: use A-B=AnDB

Limitations of Regular Expressions

e Are there languages that cannot be described using
a regular expression (or a DFA)?

e |f such languages exist, how can we prove that (no
matter how clever we are) we could never find a
regular expression describing that language?

* Example language: L ={ab"|n>=0}

Intuition: (not a proof!)

e After reading k ‘a’s and then only ‘b’s, the DFA
needs to remember that only kK ‘b’'s may be read

« A DFA can only remember a fixed number of
states, however, in language L the number n is
arbitrarily large

Automaton that Claims to Recognize
L={ab" |[n>=0}
* Assume there is a DFA recognizing L
 Let the DFA have K states, |Q] = K
e Feed it a, aa, aaa, Let gi be state after reading a
« Consider the following sequence:
Jo, 01,02, ...,0K
e This sequence has length K+1 — a state must repeat: there
IS an index i such that
Qi = Qi+p for some p > 0
e Then the automaton should accept ai+p bi+p
e But then it must also accept al bi+p
e because it is in the same state after reading ai as after ai+p
e Thus, it does not accept the given language — contradiction
* Therefore, no such DFA exists. QED

Context-free Grammars

Grammars

* o describe languages that cannot be
described using regular expressions (or
DFAs) more powerful formalisms are
needed

 Grammars, more precisely, context-free
grammars are such a formalism

* et us revisit language L which cannot be
expressed using a DFA (or regular
expression): L={ab"n|n>=0}

 How could we describe L mathematically?

Grammar for Language L

 We can defineL ={a"|n>=0}
mathematically using induction:

e Base case i =0:
The empty word € = a%0% is a word In L

* Inductive case i+1 > 0:
Let word w = aib! for some i >=0 (wisin L)
Then, awb is a word in L

 Grammars enable describing such
languages using recursion

Grammar for Language L

e Grammar for language L:
W — ¢ | aWb

* The above grammar can be understood as
follows:
"A valid word W is either the empty word €

or an ‘a’ followed by a valid word followed
bya'b'.”

—lements of a Grammar

Grammar G for language L:
W — ¢ | aWb
e Terminal symbols are elements of the underlying alphabet
 Grammar G: terminal symbols a, b in alphabet 2 = {a, b}
* Non-terminal symbols stand for parts of a word
* Grammar G: non-terminal symbol W

* Productions are rules for how non-terminal symbols are
composed of terminal symbols and other non-terminal
symbols

* Two productions in grammar G (abbreviated using ‘['):
W — ¢
W — aWb

Derivations

S— BJ|AA Start symbol S
A — CcA | dB This process is
B = aS3 | e called derivation

Q: How to find strings that are in the language?

A: Apply the production rules to generate valid strings starting
from the grammar's start symbol

e For example, two derivations: replace exactly one
non-terminal
S—+ B — aSa — aBa — aa
S = B — aSa + aAAa =@ acAAa = acdBAa — acdAa —
acddBa — acdda
* Normally, however, we are interested in the converse:

Given a program, does it correspond to the grammar of [Java/
Scala/Go/...]7

Each step:

Notation for Grammars

Two common notations for grammars:

Mathematical Backus-Naur-Form
notation: (BNF):

S — B|AA <S> 1= | <A><A>
A — cA|dB <A> = Tc" <A
B—aSa|e

a’' <S> "a"

Different
syntax for terminal

| "d"
|

and non-terminal
symbols!

Grammars for Programming Languages

* Context-free grammars are powerful enough to
describe the syntax of general-purpose
programming languages (Java, C#, Scala, ...)

e Syntax specifications of programming languages
often make use of context-free grammars

e Specs may introduce specific notations
(example: Java Language Specification)

* Such grammars are the primary basis for the
implementation of parsers tor the specitied
languages

Example: Grammar for Expressions in the
g Scala language (Extract)

Expr

Exprl

PostfixExpr ::

InfixExpr

PrefixExpr

(Bindings | [“implicit’] id | < ’) “=>’ Expr

Expril

‘if’ (° Expr €)’ {nl} Expr [[semi] €‘else’ Expr]

‘while’ “(° Expr)’ {nl} Expr

‘try’ Expr [‘catch’ Expr] [‘finally’ Expr]

‘do’ Expr [semi] €‘while’ “(° Expr)’

‘“for’ (°(’ Enumers)’ | “{’ Enumers ‘}’) {nl} [‘yield’] Expr
‘“throw’ Expr
‘return’ [Expr]
[SimpleExpr €.°] id ‘=’ Expr Extended
SimpleExprl ArgumentExprs ‘=’ Expr Backus-Naur Form
PostfixExpr (EBNF)

PostfixExpr Ascription
PostfixExpr ‘match’ ¢{’ CaseClauses ‘}’
InfixExpr [id [nl]]

PrefixExpr

InfixExpr id [nl] InfixExpr
[<-2 | 4> | “~* | “1°] SimpleExpr

Example: Grammar for Lists in Haskell

_et us create a grammar that describes the syntax
for lists in Haskell, for example:

1, 2, 3] 1:[2,3] [] 1:2:3:[]
nductive definition:

e Base case 1:
The empty list [] is a Haskell list

 Base case 2:
It L is a comma-separated sequence of list
elements, then [L] is a Haskell list

 Inductive case:
It His a list element and T is a list, then H:T is a list

Example: Grammar for Lists in Haskell

Inductive definition:

 Base case 1:
The empty list [] is a Haskell list

* Base case 2:
It L is a comma-separated sequence of list elements,

then [L] is a Haskell list

 Inductive case:
If His alist element and T is a list, then H:T is a list

The three cases expressed in BNF:
<List> ::= "[]"

| "[" <ListElems> "]"

| <LlstElem> "M <List>

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "[" <ListElems> "]"
| <ListElem> ":" <List>

Non-terminal <List> defined in terms of two
additional non-terminals <ListElems> and <ListElem>

Inductive definition of <ListElems>:
e Base case: if E is a list element, then E is also a

sequence of list elements

* Inductive case: if E is a list elementand L is a
sequence of list elements, then E, L is a sequence
of list elements

Example: Grammar for Lists in Haskell

<List> ::= "[]"

| "[" <ListElems> "]"

| <ListElem> ":" <List>
<ListElems> ::= <ListElem>

| <ListElem> "," <ListElems>

Inductive definition of <ListElems>:

 Base case: if E is a list element, then E is also a
sequence of list elements

* Inductive case: if E is a list elementand L is a
sequence of list elements, then E, L is a sequence
of list elements

Example: Grammar for Lists in Haskell

<List> ::= "[]"

| "[" <ListElems> "]"

| <ListElem> ":" <List>
<ListElems> ::= <ListElem>

| <ListElem> "," <ListElems>

How to define <ListElem>?
e |[n real Haskell, list elements can be arbitrary
Haskell expressions

e To keep our example simple enough: limit lists to
ist elements O and 1

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "[" <ListElems> "]"
| <ListElem> ":" <List>
<ListElems> ::= <ListElem>
| <ListElem> "," <ListElems>
<ListElem> ::= "o@" | "1"

How to define <ListElem>?
e |[n real Haskell, list elements can be arbitrary
Haskell expressions

e To keep our example simple enough: limit lists to
ist elements O and 1

Example: Grammar for Lists in Haskell

<List> ::= "[]"
| "[" <ListElems> "]"
| <ListElem> ":" <List>
<ListElems> ::= <ListElem>
| <ListElem> "," <ListElems>
<ListElem> ::= "o@" | "1"

Complete grammar for Haskell lists where
each list element is either O or 1

